K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét hai tam giác vuông MHB và MKC, ta có:

∠(MHB) =∠(MKC) =90o

MH = MK (chứng minh trên)

MC = MB (gt)

⇒ ΔMHB= ΔMKC (cạnh huyền- cạnh góc vuông)

Suy ra ∠B =∠C (hai góc tương ứng)

17 tháng 1 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét hai tam giác vuông AHM và AKM, ta có:

∠(AHM) =∠(AKM) =90o

Cạnh huyền AM chung

∠(HAM) =∠(KAM) (gt)

⇒ ΔAHM= ΔAKM (cạnh huyền, góc nhọn)

Suy ra: MH = MK (hai cạnh tương ứng)

a:

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

b: Xét ΔABC có

AM là đường trung tuyến

AM là đường phân giác

Do đó: ΔABC cân tại A

Suy ra: \(\widehat{B}=\widehat{C}\)

16 tháng 1 2022

cop vừa

7 tháng 2 2016

a)+)Xét 2 tam giác vuông : tam giác AHM và tam giác AKM có:

góc HAM = góc KAM  (vì AM là tia phân giác của góc A)

AM là canhj chung

=>tam giác HAM =tam giác KAM (cạnh huyền -góc nhọn)

=>MH=MK(2 cạnh tương ứng)

b)Xét 2 tam giác vuông: tam giác HMB và tam giác KMC có:

MB=MC (vì M là trung điểm của BC)

MH=MK (theo câu a)

=>tam giác HMB= tam giác KMC (cạnh huyền -cạnh góc vuông)

=>góc B =góc C ( 2 góc tương ứng) (đpcm)

7 tháng 2 2016

Giải :

Xét tam giác AHM vuông tại H và tam giác AKM vuông tại K , có :

  +  góc HAM = góc KAM (vì AM là tia phân giác của góc BAC )

  + AM : cạnh chung

Nên tam giác AHM = tam giác AKM (cạnh huyền - góc nhọn)

                 => MH = MK (hai cạnh tương ứng )

b, Xét tam giác  BHM vuông tại H và tam giác CKM vuông tại K, có:

+ MH = MK (theo câu a)

+ BM = CM  (M là trung điểm của BC )

Nên tam giác BHM = tam giác CKM (cạnh huyền - cạnh góc vuông)

=> góc B = góc C (hai góc tương ứng )

14 tháng 9 2016

a) tam giác AMH và tam giác AMK có

góc AHM = góc AKM ( = 90 độ)

chung AM

góc HAM = góc MAK ( AM là phân giác góc A)

=> tam giác AMH = tam giác AMK ( ch - gn)

=> MH = MK (cạnh tương ứng)

b) 

tam giác ABC có AM vừa là trung tuyến đồng thời là phân giác góc A 

=> tam giác ABC cân tại A (dhnb) => góc B = góc C (tc tam giác cân)

18 tháng 1 2017

a) tam giác AMH và tam giác AMK có

góc AHM = góc AKM ( = 90 độ)

chung AM

góc HAM = góc MAK ( AM là phân giác góc A)

=> tam giác AMH = tam giác AMK ( ch - gn)

=> MH = MK (cạnh tương ứng)

b)

tam giác ABC có AM vừa là trung tuyến đồng thời là phân giác góc A

=> tam giác ABC cân tại A (dhnb) => góc B = góc C (tc tam giác cân)

14 tháng 9 2016

Xét tam giác HMA vuông tại H và tam giác KMA vuông tại K có:

AM là cạnh chung

MAH = MAK (AM là tia phân giác của A)

=> Tam giác HMA = Tam giác KMA (cạnh huyền - góc nhọn)

=> MH = MK (2 cạnh tương ứng)

Xét tam giác HBM vuông tại H và tam giác KCM vuông tại K có:

MH = MK

BM = CM (M là trung điểm của BC)

=> Tam giác HBM = Tam giác KCM (cạnh huyền - cạnh góc vuông)

=> B = C (2 cạnh tương ứng)

22 tháng 2 2017

=> Góc B = góc C ( 2 góc tương ứng ) chứ bnPhương An

22 tháng 5 2017

A B M C H K

a) Xết hai tam giác vuông AMH và AMK có:

AM: cạnh huyền chung

\(\widehat{HAM}=\widehat{KAM}\left(gt\right)\)

Vậy: \(\Delta AMH=\Delta AMK\left(ch-gn\right)\)

Suy ra: MH = MK (hai cạnh tương ứng)

b) Xét hai tam giác vuông MHB và MKC có:

MB = MC (gt)

MH = MK (cmt)

Vậy: \(\Delta MHB=\Delta MKC\left(ch-cgv\right)\)

Suy ra: \(\widehat{B}=\widehat{C}\) (hai góc tương ứng).

25 tháng 2 2018

Bài 3 :

A B C H K I

Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K

Ta có :AH + HB = AB 

          AK + KC = AC 

mà AB = AC ( tam giác ABC cân tại A)

=> AH + HB = AK + KC

mà  CH và Bk lần lượt là trung trực của AB ,AC 

=> AH = HB = AK = KC

Xét tam giác AHI và tam giác AKI có 

AHI = AKI = 90

AH = AK ( cmt )

AI : cạnh chung 

=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )

=> ^HAI = ^KAI ( 2 góc tương ứng )

=> AI là tia phân giác của ^A

Vậy AI là tia phân giác của ^A

25 tháng 2 2018

Bài 1 

  A B C D E H K

a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB

Ta có : ^ABC + ^ABD = 180 (kề bù )

           ^ACB + ^ ACE = 180 ( kề bù )

mà ^ABC = ^ACB 

=> ^ABD = ^ ACE 

Xét tam giác ABD và tam giác ACE có :

AB =AC ( tam giác ABc cân tại a )

^ABD = ^ACE ( cmt )

BD = CE ( gt)

=> tm giác ABD = tam giác ACE ( c.g.c)

=> ^ADB = ^AEC ( 2 góc tương ứng ) 

hay ^HDB = ^KEC 

Xét tam giác HBD và tam gisc KEC có :

^DHB = ^EKC = 90 

BD =  CE (gt)

HDB = KEc ( cmt )

=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )

=> HB = Ck ( 2 canh tương ứng )

Vậy HB = Ck

b,Xét tam giác ABH và tam giác ACk có 

AHB = AKC = 90

HB = CK ( cmt )

AB = AC 

=> tam giác ABH = tam giác  ACK ( anh huyền - canh góc vuồng )

Vậy tam giác ABH =tam giác ACK