K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2019

HS tự chứng minh

NV
22 tháng 10 2019

Đề bài sai bạn, \(a=0;b=c=-\sqrt{3}\) thì \(a^2+b^2+c^2=6\)\(a+b+c< 0\)

22 tháng 10 2019

k bạn ơi

Ta có : a>b

Cộng 2 vế : a+2>b+2 =>đpcm

a>b

nên a+2>b+2

24 tháng 12 2019

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

24 tháng 12 2019

Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(3\left(a^2+b^2+c^2\right)=3a^2+3b^2+3c^2\)
\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{matrix}\right.\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow}a=b=c\Rightarrowđpcm}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Xét tam giác ABC, ta có:

\(\widehat A + \widehat B + \widehat C = {180^o} \Rightarrow \frac{{\widehat A}}{2} + \frac{{\widehat B + \widehat C}}{2} = {90^o}\)

Do đó \(\frac{{\widehat A}}{2}\) và \(\frac{{\widehat B + \widehat C}}{2}\) là hai góc phụ nhau.

a) Ta có: \(\sin \frac{A}{2} = \cos \left( {{{90}^o} - \frac{A}{2}} \right) = \cos \frac{{B + C}}{2}\)

b) Ta có: \(\tan \frac{{B + C}}{2} = \cot \left( {{{90}^o} - \frac{{B + C}}{2}} \right) = \cot \frac{A}{2}\)

5 tháng 8 2016

 \(a.\left(a^2-1\right)=a.\left(a-1\right).\left(a+1\right)\)

Vậy đây là tích của 3 số nguyên liên tiếp

Nếu a chẵn thì a chia hết cho 2 => a.(a-1).(a+1) chia hết cho 2

Nếu a lẻ thì a chia 2 dư 1=> a+1 chia hết cho 2=> a.(a-1).(a+1) chia hết cho 2

Vậy a.(a-1).(a+1) chia hết cho 2 với mọi a (1)

Nếu a chia hết cho 3=> a.(a-1).(a+1) chia hết cho 3

Nếu a chia 3 dư 1=> a-1 chia hết cho 3=> a.(a-1).(a+1) chia hết cho 3

Nếu a chia 3 dư 2=> a+1 chia hết cho 3=> a.(a-1).(a+1) chia hết cho 3

Vậy a.(a-1).(a+1) chia hết cho 3 với mọi a (2)

Từ (1) và (2) => a.(a-1).(a+1) chia hết cho 6

Hay \(a.\left(a^2-1\right)\) chia hết cho 6