Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm đường trung tuyến AM (M thuộc BC).
a, Tính AM.
b, Gọi H,K lần lượt là hình chiếu của M. Chứng minh AHMK là hình chữ nhật.
c, Tam giác vuông ABC thêm điều kiện gì để tứ giác AHMK là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
a: Sửa đề: vẽ MH\(\perp\)AB, MK\(\perp\)AC
Xét tứ giác AHMK có
\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)
=>AHMK là hình chữ nhật
b: Vì ΔABC vuông tại A
nên \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)
\(=\dfrac{1}{2}\cdot6\cdot8=\dfrac{1}{2}\cdot48=24\left(cm^2\right)\)
a: Xét tứ giác AHMK có
\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)
Do đó: AHMK là hình chữ nhật
a) Với ∆ABC ⊥ tại A và M là trung điểm BC, ta có:
- Theo định lý Pythagoras, ta có: AB^2 + AC^2 = BC^2
- Thay giá trị vào, ta có: 6^2 + 8^2 = BC^2
- Tính toán, ta có: 36 + 64 = BC^2
- Tổng cộng, BC^2 = 100
- Vì BC là độ dài, nên BC = √100 = 10cm
- Vì M là trung điểm BC, nên AM = MC = 10/2 = 5cm
b) Để chứng minh ABEC là hình chữ nhật, ta cần chứng minh AB // EC và AB = EC.
- Vì M là trung điểm BC, nên AM = MC.
- Vì ∆ABC ⊥ tại A, nên góc BAC = 90 độ.
- Vì M là trung điểm BC, nên BM = MC.
- Vì BM = MC và góc BAC = 90 độ, nên ∆BAM ≅ ∆CAM theo góc-góc-góc.
- Từ đó, ta có AB = AC và góc BAM = góc CAM.
- Vì AB = AC và góc BAM = góc CAM, nên ∆ABM ≅ ∆ACM theo cạnh-góc-cạnh.
- Từ đó, ta có góc AMB = góc AMC và BM = MC.
- Vì góc AMB = góc AMC và BM = MC, nên ∆BME ≅ ∆CME theo góc-góc-góc.
- Từ đó, ta có góc BME = góc CME và BM = MC.
- Vì góc BME = góc CME và BM = MC, nên BM // EC.
- Vì BM // EC và AB = AC, nên AB // EC và AB = EC.
- Từ đó, ta có ABEC là hình chữ nhật.
c) Để chứng minh AH = IK và NO = 1/2 IK, ta cần chứng minh ∆AHN ≅ ∆IKO.
- Vì AH ⊥ BC và IK ⊥ AB, nên góc HAN = góc KIO = 90 độ.
- Vì AH ⊥ BC và HN ⊥ AN, nên góc HAN = góc HNA.
- Vì IK ⊥ AB và KO ⊥ AO, nên góc KIO = góc KOI.
- Vì góc HAN = góc HNA và góc KIO = góc KOI, nên ∆AHN ≅ ∆IKO theo góc-góc-góc.
- Từ đó, ta có AH = IK và NO = 1/2 IK.
d) Vì ∆AHN ≅ ∆IKO, nên góc INK = góc HNO.
- Vì NO = 1/2 IK, nên góc HNO = góc INK.
- Từ đó, ta có góc INK = góc HNO.
a: AM=5cm