K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Ta có 

Suy ra đồ thị của hàm số g’ (x)  là phép tịnh tiến đồ thị hàm số y= f’ (x)  theo phương Oy xuống dưới đơn vị.

Ta có và dựa vào đồ thị của hàm số y= f’ (x),  ta suy ra đồ thị của hàm số g’ (x)  cắt trục hoành tại 4 điểm.

Chọn D.

12 tháng 12 2019

23 tháng 4 2017

Chọn A

Ta có: g(x) = f(x-2017) - 2018x + 2019.

Nhận xét: tịnh tiến đồ thị hàm số y = f'(x) sang bên phải theo phương của trục hoành 2017 đơn vị ta được đồ thị hàm số y = f'(x-2017) . Do đó, số nghiệm của phương trình f'(x) = 2018 bằng số nghiệm của phương trình (*).

Dựa vào đồ thị ta thấy phương trình (*) có nghiệm đơn duy nhất hay hàm số đã cho có duy nhất 1 điểm cực trị.

23 tháng 10 2018

10 tháng 11 2018

Chọn đáp án B.

11 tháng 6 2019

Dựa vào đồ thị hàm số y= f’(x)  suy ra phương trình f’( x- 2017) = 2018  có 1 nghiệm đơn duy nhất. 

 

Suy ra hàm số y= g( x)  có 1 điểm cực trị

4 tháng 1 2020

Đáp án D.

29 tháng 8 2019

Đáp án B

Ta có

.

.

Hình bên dưới là đồ thị của hàm số .

Dựa vào hình vẽ ta thấy đồ thị hàm số cắt nhau tại 2 điểm phân biệt, đồng thời khi hoặc , khi .

Do đó đổi dấu qua , .

Vậy hàm số g(x) có hai điểm cực trị.

17 tháng 12 2019

Chọn B

Ta có g’(x) = f’(x) + 1.

 Đồ thị của hàm số y= g’(x) là phép tịnh tiến đồ thị của hàm số y= f’(x) theo phương song song  với Oy lên trên 1 đơn vị.

Khi đó đồ thị hàm số y= g’(x) cắt trục hoành tại hai điểm phân biệt.

=> Hàm số y= g(x) có 2 điểm cực trị.

27 tháng 7 2018

Đáp án D