K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Ta có: x8 - y7 + x4y5 - 2y7 - x4y5 = x8 - 2y7. Chọn D

Câu 3:

a: A(x)=x^3+3x^2-4x-12

B(x)=x^3-3x^2+4x+18

A(x)+B(x)

=x^3+3x^2-4x-12+x^3-3x^2+4x+18

=2x^3+6

A(x)-B(x)

=x^3+3x^2-4x-12-x^3+3x^2-4x-18

=6x^2-8x-30

b: A(-2)=(-8)+3*4-4*(-2)-12

=-20+3*4+4*2=0

=>x=-2 là nghiệm của A(x)

B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10

=>x=-2 ko là nghiệm của B(x)

 

20 tháng 5 2022

`a)`

`A=-4x^5y^3+6x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+3x^2y^3z^2-2y^4+22`

`A=(-4x^5y^3+4x^5y^3)+(6x^4y^3-x^4y^3)-(3x^2y^3z^2-3x^2y^3z^2)-2y^4+22`

`A=5x^4y^3-2y^4+22`

        `->` Bậc: `7`

`b)B-5y^4=A`

`=>B=A+5y^4`

`=>B=5x^4y^3-2y^4+22+5y^4`

`=>B=5x^4y^3+3y^4+22`

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)      \(Q = 5{x^2} - 7xy + 2,5{y^2} + 2x - 8,3y + 1\) có bậc là 2.

b)       

\(\begin{array}{l}H = 4{x^5} - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} - 4{x^5} + 2{y^2} - 7\\ = \left( {4{x^5} - 4{x^5}} \right) - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\\ =  - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\end{array}\)

Đa thức H có bậc là 4.

25 tháng 6 2020

1. Đơn thức nào sau đây đồng dạng vs đơn thức -3xy2:

A. -3x2y B. (-3xy)y C. -3(xy)2 D. -3xy

2. Đơn thức \(-\frac{1}{3}y^2z^49x^3y\) có bậc là:

A. 6 B. 8 C. 10 D. 12

3. Bậc của đa thức Q = x3 - 7x4y + xy3 - 11 là:

A. 7 B. 6 C. 5 D. 4

4. Giá trị x = 2 là nghiệm của đa thức:

A. f(x) = 2 + x B. f(x) = x2 - 2 C. f(x) = x - 2 D. f(x) = x(x - 2)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

\(\begin{array}{l}P = 5{x^4} - 3{x^3}y + 2x{y^3} - {x^3}y + 2{y^4} - 7{x^2}{y^2} - 2x{y^3}\\ = 5{x^4} + 2{y^4} + \left( { - 3{x^3}y - {x^3}y} \right) + \left( {2x{y^3} - 2x{y^3}} \right) - 7{x^2}{y^2}\\ = 5{x^4} + 2{y^4} - 4{x^3}y - 7{x^2}{y^2}\\Q = {x^3} + {x^2}y + x{y^2} - {x^2}y - x{y^2} - {x^3}\\ = \left( {{x^3} - {x^3}} \right) + \left( {{x^2}y - {x^2}y} \right) + \left( {x{y^2} - x{y^2}} \right)\\ = 0\end{array}\)

Do đó, bậc của đa thức P là 4; đa thức Q không có bậc.

Tại x = 1; y = -2, ta có:

 \(\begin{array}{l}P = 5.{1^4} + 2{(-2)^4} - 4.{1^3}(-2) - 7.{1^2}{(-2)^2}\\=5+2.16-4.(-2)-7.4=5+32+8-28\\=17\end{array}\)

\(Q = 0\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)

\(\begin{array}{l}P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z\\ = \left( {8{x^2}{y^2}z - 5{x^2}{y^2}z - 3{x^2}{y^2}z} \right) - 2xyz + 5{y^2}z + {x^2}{y^2}\\ =  - 2xyz + 5{y^2}z + {x^2}{y^2}\end{array}\)

Hạng tử có bậc cao nhất là \({x^2}{y^2}\) có bậc là 2 + 2 = 4 nên bậc của đa thức là 4.

b) Thay \(x =  - 4;y = 2;z = 1\) vào P ta được \(P =  - 2.\left( { - 4} \right).2.1 + {5.2^2}.1 + {\left( { - 4} \right)^2}{.2^2} = 16 + 20 + 64 = 100.\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)      Đa thức có 5 hạng tử là: \({x^2}y; - 3xy;5{x^2}{y^2};0,5x; - 4\)

Xét hạng tử \({x^2}y\) có hệ số là 1, bậc của x là 2, bậc của y là 1 => bậc là 2+1=3.

Xét hạng tử \( - 3xy\) có hệ số là -3,  bậc của x là 1, bậc của y là 1  => bậc là 1+1=2.

Xét hạng tử \(5{x^2}{y^2}\) có hệ số là 5, bậc của x là 2, bậc của y là 2  => bậc là 2+2=4.

Xét hạng tử \(0,5x\) có hệ số là 0,5, bậc của x là 1 => bậc là 1.

Xét hạng tử -4 có hệ số là -4, bậc là 0.

b)      Đa thức có 4 hạng tử là \(x\sqrt 2 ; - 2x{y^3};{y^3}; - 7{x^3}y\)

Xét hạng tử \(x\sqrt 2 \) có hệ số là \(\sqrt 2 \), bậc của x là 1 => bậc là 1.

Xét hạng tử \( - 2x{y^3}\) có hệ số là -2, bậc của x là 1, bậc của y là 3  => bậc là 1+3=4.

Xét hạng tử \({y^3}\) có hệ số là 1, bậc của y là 3  => bậc là 3.

Xét hạng tử \( - 7{x^3}y\) có hệ số là -7, bậc của x là 3, bậc của y là 1  => bậc là 3+1=4.