Tìm số nguyên dương n thỏa mãn các điều kiện sau
C n - 1 4 - C n - 1 3 < 5 4 A n - 2 2 C n + 1 n - 4 ≥ 7 15 A n + 1 3
(Ở đây A n k ; C n k lần lượt là số chỉnh hợp và số tổ hợp chập k của n phần tử).
A. n = 7
B. n = 8
C. n = 9
D. n = 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4}{2n-1}\)
a, ĐK : \(2n-1\ne0\Leftrightarrow n\ne\frac{1}{2}\)
b, Khi n = 0
\(A=\frac{4}{2.0-1}=\frac{4}{0-1}=\frac{4}{-1}=-4\)
Khi n = 3
\(A=\frac{4}{2.3-1}=\frac{4}{6-1}=\frac{4}{5}\)
Khi n = 5
\(A=\frac{4}{2.5-1}=\frac{4}{10-1}=\frac{4}{9}\)
c, Để \(A\in Z\)thì \(4⋮2n-1\)hay \(2n-1\inƯ\left(4\right)\)
Ta có bảng sau :
Ư(4) | 2n-1 | n |
1 | 1 | 1 ( TM) |
-1 | -1 | 0 ( TM ) |
2 | 2 | 3/2 ( Loại ) |
-2 | -2 | -1/2 ( Loại ) |
4 | 4 | 5/2 ( Loại ) |
-4 | -4 | -3/2 ( Loại ) |
Vậy để A nguyên thì \(n\in\left\{1;0\right\}\)
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
n2 + n + 1 = ( m2 + m - 3 ) ( m2 - m + 5 ) = m4 + m2 + 8m - 15
\(\Rightarrow\)n2 + n - ( m4 + m2 + 8m - 16 ) = 0 ( 1 )
để phương trình ( 1 ) có nghiệm nguyên dương thì :
\(\Delta=1+4\left(m^4+m^2+8m-16\right)=4m^4+4m^2+32m-63\)phải là số chính phương
Ta có : \(\Delta=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)với m thuộc Z+
Mặt khác : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)\)
do đó : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\)với m > 2
\(\Rightarrow\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)với m > 2
Nên ( 1 ) có nghiệm nguyên dương khi m = 1 hoặc m = 2
+) m = 1 thì \(n^2+n+16=0\) vô nghiệm
+) m = 2 thì \(n^2=n-20=0\Rightarrow\orbr{\begin{cases}n=4\left(tm\right)\\n=-5\left(loai\right)\end{cases}}\)
Thử lại m = 2 và n = 4 thỏa mãn điều kiện bài toán
Vậy m = 2 và n = 4
P/s : bài " gắt "
a) Để A>0 thì \(\frac{n-20}{30}>0\) mà 30>0 nên n-20>0 hay n>20
b) \(1< A< 2\Leftrightarrow\frac{30}{30}< \frac{n-20}{30}< \frac{60}{30}\)
\(\Rightarrow30< n-20< 60\)
\(\Rightarrow50< n< 80\)( Cộng 3 vế với 20 )
c) Tương tự câu b :
\(\frac{15}{30}< \frac{n-20}{30}< \frac{30}{30}\Leftrightarrow15< n-20< 30\)
\(\Rightarrow35< n< 50\)
\(n\in\left\{36;37;...;49\right\}\)
Nên n có \(49-36+1\)số hạng hay n có 14 số hạng
Điều kiện: n - 1 ≥ 4 nên n ≥ 5
Hệ điều kiện ban đầu tương đương:
⇔ n - 1 n - 2 n - 3 n - 4 4 . 3 . 2 . 1 - n - 1 n - 2 n - 3 3 . 2 . 1 ≤ 5 4 n - 2 n - 3 n + 1 n n - 1 n - 2 n - 3 5 . 4 . 3 . 2 . 1 ≥ 7 15 n + 1 n n - 1 ⇔ n 2 - 9 n - 22 < 0 n ≥ 5 n 2 - 5 n - 50 ≥ 0 ⇒ n = 10
Vậy n = 10 thỏa yêu cầu bài toán
Đáp án D