Một tổ có 4 học sinh nam và 5 học sinh nữ
a) Hỏi có bao nhiêu cách xếp học sinh trong tổ thành một hàng dọc?
A. 4!*5!
B. 4!+5!
C. 9!
D. A 9 4 . A 9 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu đánh số theo hàng dọc từ 1 đến 9 thì cần xếp 5 học nữ vào 5 vị trí lẻ nên có 5!cách xếp; và xếp 4 học sinh nam vào 4 vị trí chẵn nên có 4!cách xếp. Theo quy tắc nhân ta có, ta có 4!*5! Cách xếp 9 học sinh thành hàng dọc xen kẽ nam nữ.
Chọn A
Ta xét hai trường hợp:
TH1. Bạn nam đứng đầu hàng
Xếp 4 bạn nam vào 4 vị trí 1;3;5;7 có 4!=24 cách xếp 4 bạn nam
Có 4!=24 cách xếp 4 bạn nữ vào 4 vị trí còn lại.
Khi đó số cách sắp xếp là cách.
TH2. Bạn nữ đứng đầu hàng, tương tự TH1, suy ra có 242 cách sắp xếp.
Vậy có 2.242 cách sắp xếp thỏa mãn yêu cầu bài toán.
Chọn D.
Xếp Phúc Đức cạnh nhau có \(2!\) cách
Xếp 4 học sinh nữ có \(4!\) cách
4 học sinh nữ tạo ra 5 khe trống, xếp cặp Phúc-Đức và 3 học sinh nam còn lại vào 5 khe trống này có: \(A_5^4\) cách
\(\Rightarrow2!.4!.A_5^4\) cách xếp thỏa mãn
Vì các bạn nữ luôn ngồi gần nhau nên ta coi 4 bạn nữ là x
=> Có 4! cách xếp x
số cách xếp 5 học sinh nam và x là :
6!.4! = 17280 (cách)
Chọn ra 5 học sinh trong 11 học sinh không quan tâm đến thứ tự.
=> Tổ hợp chập 5 của 11 phân tử: \(C_{11}^5\)
Đáp án C.
Phương pháp:
+) Chọn 2 học sinh nam.
+) Chọn 3 học sinh nữ.
+) Sử dụng quy tắc nhân.
Cách giải:
Số cách chọn 2 học sinh nam C 6 2
Số cách chọn 3 học sinh nữ C 9 3
Vậy số cách chọn 5 học sinh đi lao động trong đó có 2 học sinh nam là C 6 2 . C 9 3 .
- Mỗi cách xếp có 4+5=9 học sinh thành hàng dọc là một hoán vị của 9 học sinh đó. Vậy có tất cả 9! Cách xếp. Chọn đáp án là C
Nhận xét: học sinh có thể nhầm lẫn xếp nam và nữ riêng nên cho kết quả 4!*5! (phương án A); hoặc vừa xếp nam và nữ riêng và sử dụng quy tắc cộng để cho kết quả 4!+5! (phương án B); hoặc chọn 4 học sinh nam trong p học sinh và 5 học sinh nữ trong 9 học sinh để cho kết quả A94.A95 ( phương án D)