Cho Δ A B C cân tại A có AM là đường trung tuyến khi đó
A. A M ⊥ B C
B. AM là đường trung trực của BC
C. AM là đường phân giác của góc BAC
D. Cả A, B, C đều đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM};\widehat{AMB}=\widehat{AMC}\)
\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
\(\widehat{BAM}=\widehat{CAM}\)
AM nằm giữa AB,AC
Do đó: AM là phân giác của \(\widehat{BAC}\)
b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có
MB=MC
\(\widehat{MBA}=\widehat{MCD}\)
Do đó: ΔMBA=ΔMCD
=>MA=MD
=>M là trung điểm của AD
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>BD//AC
BD//AC
AC\(\perp\)BH
Do đó: BD\(\perp\)BH
=>\(\widehat{HBD}=90^0\)
a: Xét ΔABM có DN//BM
nên DN/BM=AD/AB
hay DN/CM=AD/AB(1)
Xét ΔACM có NE//MC
nên NE/MC=AE/AC(2)
Xét ΔABC có DE//BC
nên AD/AB=AE/AC(3)
Từ (1), (2) và (3) suy ra ND=NE
hay N là trung điểm của DE
=>MN là đường trung bình
b: Xét ΔNMD có \(\widehat{NMD}=\widehat{NDM}\left(=\widehat{DMB}\right)\)
nên ΔNMD cân tại N
Xét ΔMNE có NE=NM
nên ΔMNE cân tại N
Xét ΔMDE có
NM là đường trung tuyến
MN=DE/2
Do đó: ΔMDE vuông tại M
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó:ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
nên \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của \(\widehat{BAC}\)
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra AM là đường trung trực của BC
a: ΔABC cân tại A
mà AM là trung tuyến
nen AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM là trung trực của BC(1)
c: EB=EC
nên E nằm trên trung trực của BC(2)
Từ (1), (2) suy ra A,M,E thẳng hàng
Hình này hơi sai vì mk ko đo nhưng nó chỉ mang tính chất minh họa
a) Để chứng minh AM vuông góc với BC, ta sử dụng tính chất của tam giác cân. Vì tam giác ABC cân tại A, nên ta có MA = MC. Vì M là trung điểm của BC, nên ta có MB = MC. Từ đó, ta có MA = MB. Giả sử ta kẻ đường thẳng AM. Vì MA = MB, nên đường thẳng AM là đường trung tuyến của tam giác ABC. Theo tính chất của đường trung tuyến, ta có AM song song và bằng một nửa đoạn thẳng BC. Do đó, AM vuông góc với BC. b) Vì tam giác ABC cân tại A, nên ta có góc BAC = góc BCA. Vì góc BAC = 40 độ, nên góc BCA = 40 độ. Vì tam giác ABC cân tại A, nên tổng hai góc B và góc C là 180 độ - góc BAC = 180 độ - 40 độ = 140 độ. Vì tam giác ABC là tam giác cân, nên góc B = góc C = (180 độ - 140 độ)/2 = 20 độ. Vậy góc B của tam giác ABC là 20 độ và góc C cũng là 20 độ. c) Để chứng minh AB // CD, ta sử dụng tính chất của đường trung tuyến. Vì N là trung điểm của đoạn thẳng BC, nên BN song song và bằng một nửa đoạn thẳng AC. Từ đó, ta có: BN = 1/2 AC. Giả sử ta kẻ đường thẳng CD. Vì NB = ND, nên ta có: 1/2 AC = NB = ND. Do đó, ta có AB // CD. Để chứng minh tam giác ACD cân, ta sử dụng tính chất của đường trung tuyến. Vì D là điểm trên đường trung tuyến BN, nên ta có: ND = 1/2 NB. Từ đó, ta có: ND = 1/2 NB = 1/2 AC. Vì NB = ND và AD là đoạn thẳng chứa đường trung tuyến BN, nên ta có: AD song song và bằng một nửa đoạn thẳng AC. Do đó, tam giác ACD cân. d) Để chứng minh BK = 1/3 BD, ta sử dụng tính chất của điểm giao nhau của hai đường trung tuyến. Vì K là giao điểm của AM và BN, nên ta có: AK = 2/3 AM và BK = 2/3 BN. Vì MA = MB (vì tam giác ABC cân tại A và M là trung điểm của BC), nên AM là đường trung tuyến của tam giác ABC. Từ đó, ta có: AM = 1/2 BC. Vì NB = ND (vì trên tia BN ta lấy điểm D sao cho NB = ND), nên BN cũng là đường trung tuyến của tam giác ABC. Từ đó, ta có: BN = 1/2 AC. Do đó, ta có: AM = 1/2 BC = 1/2 AC. Vì BN = 1/2 AC, nên ta có: BK = 2/3 BN = 2/3 * 1/2 AC = 1/3 AC. Vì AC = BD (vì tam giác ACD cân và D là điểm trên đường trung tuyến BN), nên ta có: BK = 1/3 BD. Vậy ta đã chứng minh BK = 1/3 BD.
a: ΔABC cân tại A có AM là đường trung tuyến
nên AM vuông góc BC
b: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)
c: Xét tứ giác ABCD có
N là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB//CD và AB=CD
=>CD=CA
=>ΔCAD cân tại C
a: M là trung điểm của BC
=>AM là đường trung tuyến của ΔABC
b: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
c: Sửa đề; tam giác ABC
AB=AC
BM=CM
=>AM là trung trực của BC
Vì Δ A B C cân tại A có AM là đường trung tuyến nên AM cũng là đường cao, đường trung trực và đường phân giác của tam giác ABC
Chọn đáp án D