Cho lục giác đều ABCDEF tâm O . Hỏi có bao nhiêu vecto khác vecto không ; cùng phương O C → với có điểm đầu và điểm cuối là các đỉnh của lục giác?
A. 3
B. 5
C. 6
D. 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Các vecto cùng phương với có điểm đầu và điểm cuối là các đỉnh của lục giác :
Số vecto khác vecto 0, có điểm đầu điểm cuối lấy từ 7 điểm A,B,C,D,E,F,O là:
\(A^2_7=7\cdot6=42\left(vecto\right)\)
\(T=\left|\overrightarrow{DF}\right|=\left|\overrightarrow{DE}+\overrightarrow{EF}\right|\Rightarrow T^2=DE^2+EF^2+\overrightarrow{DE}.\overrightarrow{EF}\)
\(=a^2+a^2+a.a.cos60^0=3a^2\)
\(\Rightarrow\left|\overrightarrow{DF}\right|=a\sqrt{3}\)
\(AC=FD\Rightarrow\left|\overrightarrow{AC}\right|=a\sqrt{3}\)
\(P=\left|\overrightarrow{AI}\right|=\left|\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AC}\right|\Rightarrow P^2=\dfrac{1}{4}\left(AD^2+AC^2+2\overrightarrow{AD}.\overrightarrow{AC}\right)\)
\(=\dfrac{1}{4}\left(4a^2+3a^2+2.2a.a\sqrt{3}.cos30^0\right)=\dfrac{11}{2}a^2\)
\(\Rightarrow\left|\overrightarrow{AI}\right|=\dfrac{a\sqrt{22}}{2}\)
Ngũ giác đều chứ nhỉ ._?
Các vector bằng nhau: `\vec(AB) =\vec(ED) ; \vec(BA)=\vec(DE) ; \vec(BC)=\vec(FE) ; \vec(CB)=\vec(EF) ; \vec(AF)=\vec(CD) ; \vec(FA)=\vec(DC) ; \vec(AO)=\vec(OD) ; \vec(OA) =\vec(DO) ; \vec(BO)=\vec(OE) ; \vec(OB)=\vec(EO) ; \vec(FO)=\vec(OC) ; \vec(OF)=\vec(CO)`
Số các véc tơ khác \(\overrightarrow{0}\) bằng véc tơ \(\overrightarrow{OC}\) có điểm đầu và điểm cuối là đỉnh lục giác là:
\(\overrightarrow{AB};\overrightarrow{BA};\overrightarrow{FO};\overrightarrow{OF};\overrightarrow{ED};\overrightarrow{DE};\overrightarrow{FC};\overrightarrow{CF}\).
Có 8 véc tơ.
Các vecto cùng phương O C → với có điểm đầu và điểm cuối là các đỉnh của lục giác
: .
Chọn C.