Cho hình chóp S.ABC và biết rằng có một mặt cầu tiếp xúc với tất cả các cạnh bên của hình chóp đồng thời tiếp xúc với ba cạnh của đáy tại trung điểm của mỗi cạnh đáy. Chứng minh hình chóp đó là hình chóp đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M, N, P theo thứ tự là các tiếp điểm của mặt cầu với các cạnh SA, SB, SC; D, E, F theo thứ tự là trung điểm của các cạnh AB, BC, CA, các điểm D, E, F đồng thời cũng là tiếp điểm của mặt cầu với các cạnh AB, BC, CA.
Ta có: AD = AF
BD = BE BC = AB
AB = BC = CA
\(\Delta ABC\) là tam giác đều (1)
Ta lại có AM = AD; BN = BD = AD
và SM = SN = SP
SM + AM = SN + NB
SA = SB
Chứng minh tương tự ta có: SA = SB = SC.
Gọi H là chân đường cao của hình chóp kẻ từ đỉnh S, ta có:
\(\Delta SHA=\Delta SHB=\Delta SHC\) => HA = HB = HC
H là tâm của tam giác đều ABC (2)
Từ (1) và (2) suy ra hình chóp S.ABC là hình chóp tam giác đều.
Gọi mặt cầu đã cho có tâm O và bán kính R.
Gọi M, N, P lần lượt là trung điểm của AB, BC và CA.
Gọi I,J và K lần lượt là tiếp điểm của các cạnh bên SA, SB, SC với mặt cầu:
+ Từ giả thiết ta suy ra: OI ⊥ SA; OM ⊥ AB
Xét tam giác OIA và tam giác OMA có:
⇒ ∆ OIA = ∆OMA ( ch- cgv)
⇒ AM = AI.
Chứng minh tương tự có: BM= BJ và SI = SJ (1)
Mà AM = BM nên AI= BJ ; (2)
Từ (1) và (2) suy ra: SI+IA = SJ + BJ hay SA = SB (3)
* Chứng minh tương tự, ta có SB= SC (4).
Từ (3) và (4) suy ra: SA = SB = SC (*)
Mặt khác ; BM = BN (= BJ) và CN = CP (= CK)
Suy ra; AB = 2BM = BC = 2 CN = 2CP = CA
Do đó, tam giác ABC là tam giác đều (**)
Từ (*) và (**) suy ra, S. ABC là hình chóp tam giác đều.
Giả sử mặt cầu đi qua đỉnh A của hình chóp và tiếp xúc với cạnh SB tại B1, tiếp xúc với cạnh SC tại C 1 . Khi đó mặt cầu cắt cạnh AB, AC lần lượt tại các điểm C 2 , B 2 . Mặt phẳng (SAB) cắt mặt cầu đó theo giao tuyến là một đường tròn. Đường tròn này tiếp xúc với SB tại B1 và đi qua A và C 2
Do đó, ta có: BB 1 2 = BA . BC 2
trong đó
Do đó
Vậy
Điều đó chứng tỏ mặt cầu nói trên đi qua trung điểm C 2 của đoạn AB. Lí luận tương tự ta chứng minh được mặt cầu đó đi qua trung điểm B 2 của AC.
Gọi giao điểm thứ hai của mặt cầu với đường thẳng SA là D, ta có:
Do đó
Do đó, \(SD=\dfrac{a^2}{2}:a\sqrt{2}=\dfrac{a\sqrt{2}}{4}\)
và \(AD=SA-SD=\dfrac{3a\sqrt{2}}{4}\)
Đáp án A
+ Do các cạnh bên cùng tạo với đáy một góc bằng nhau nên hình chiếu vuông góc của S trên mặt đáy trùng với tâm đường tròn ngoại tiếp tam giác ABC.
+ Mà tam giác ABC vuông tại B nên trung điểm H của AC chính là hình chiếu vuông góc của S trên mặt đáy ⇒ SH ⊥ ABC .
Góc giữa SA và mặt đáy chính là góc giữa SA và AC hay SAC ⏜ = 60 °
⇒ ΔSAC đều => Trọng tâm G chính là tâm đường tròn ngoại tiếp tam giác SAC và G ∈ SH .
Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA và A’ , B’, C’ là các điểm tiếp xúc của các cạnh bên SA, SB, SC với mặt cầu. Ta có AA’ và AM là hai tiếp tuyến nên AM = AA’. Vì M là trung điểm của AB nên AM = MB.
Mặt khác BM = BB’, ta suy ra AA’ = BB’
Vì SA’ = SB’ nên SA’ + A’A = SB’ + B’B hay SA = SB.
Tương tự, ta chứng minh được SB = SC
Do đó SA = SB = SC.
Mặt khác AB = 2BM = 2BN = BC = 2CN = 2CP = CA
Vậy AB = BC = CA và ABC là một tam giác đều nên là một hình chóp đều. Ta có đường cao kẻ từ S có chân H là tâm đường tròn ngoại tiếp tam giác đều ABC.