Nếu parabol ( P ) y = a x 2 + b x + c a ≠ 0 có đỉnh nằm phía trên trục hoành và cắt trục hoành tại hai điểm thì:
A. a > 0 b 2 - 4 a c > 0
B. a < 0 b 2 - 4 a c > 0
C. a > 0 b 2 - 4 a c = 0
D. a < 0 b 2 - 4 a c < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay x=1 và y=-2 vào (P), ta được:
\(a\cdot1^2-4\cdot1+c=-2\)
\(\Leftrightarrow a-4+c=-2\)
hay a+c=-2+4=2
Thay x=2 và y=3 vào (P), ta được:
\(a\cdot2^2-4\cdot2+c=3\)
\(\Leftrightarrow4a-8+c=3\)
hay 4a+c=11
Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)
Vậy: (P): \(y=3x^2-4x-1\)
\(ĐK:a\ne0\)
\(A\left(0;1\right)\in\left(P\right)\Leftrightarrow c=1\)
(P) có đỉnh trên trục hoành \(\Leftrightarrow\Delta=b^2-4ac=0\Leftrightarrow b^2=4ac=4a\Leftrightarrow a=\dfrac{b^2}{4}\)
\(B\left(2;1\right)\in\left(P\right)\Leftrightarrow4a+2b+c=1\\ \Leftrightarrow b^2+2b=0\\ \Leftrightarrow\left[{}\begin{matrix}b=0\Leftrightarrow a=0\left(ktm\right)\\b=-2\Leftrightarrow a=1\left(tm\right)\end{matrix}\right.\)
Vậy \(a+b+c=1-2+1=0\)
Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có
\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)
\(\Rightarrow y=x^2-2x-24\)
1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0)
<=> \(0=6+b\Leftrightarrow b=-6\)
2, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-1\right)x-m+4=0\)
Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay
\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)
Đề bài : Xác định parabol \(y=ax^2+bx+c\left(a\ne0\right)\), biết rằng đỉnh của parabol đó có tung độ bằng -25, đông thời parabol đó cắt trục hoành tại 2 điểm A(-4;0) và B(6;0).
Tọa độ đỉnh cảu (P) : \(I\left(\frac{-b}{2a};\frac{-\left(b^2-4ac\right)}{4a}\right)\)
Mà (P) đi qua A và B nên ta có hệ : \(\hept{\begin{cases}\frac{4ac-b^2}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{cases}}\)
Giải hệ này được \(\hept{\begin{cases}a=1\\b=-2\\c=-24\end{cases}}\). Vậy \(\left(P\right):y=x^2-2x-24\)
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
Vì parabol cắt trục hoành tại hai điểm nên phương trình a x 2 + b x + c = 0 có 2 nghiệm hay Δ = b 2 − 4 a c > 0
Đỉnh của parabol là I − b 2 a ; − Δ 4 a . Điểm này nằm phía trên trục hoành nên tung độ điểm này lớn hơn 0, tức là − Δ 4 a > 0 . Mà Δ > 0 ⇒ a < 0
Chọn B.