K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

Đối với 3 vị trí của 3 loại sách thì sách hóa chỉ có thể đứng ở đầu hoặc cuối: 2 cách chọn.

Tương ứng mỗi vị trí của loại sách hóa thì số cách xếp các cuốn sách hóa là: 2!

Tương tự, số cách xếp toán và lý là: 2.4!.3!

Vậy tổng số cách xếp cần tìm: 2.4!.3!.(2!.2) = 4.4!.3!.2!.

Chọn D.

2 tháng 4 2017

1hàng

2 tháng 4 2017

3 nha bạn. Mà bạn có phải là fan của Fairy Tall k,nếu đúng thì kb nha

18 tháng 8 2019

Ta xếp các cuốn sách cùng một bộ môn thành một nhóm

Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: 3!=6 cách xếp

Với mỗi cách xếp 3 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán, 6! cách hoán vị các cuốn sách Lý và 8! cách hoán vị các cuốn sách Hóa

Vậy theo quy tắc nhân có tất cả: 6.5!.6!.8 cách xếp

Chọn đáp án B

21 tháng 1 2017

Ta xếp các cuốn sách cùng một bộ môn thành một nhóm

Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: 3!=6 cách xếp

Với mỗi cách xếp 3 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán, 6! cách hoán vị các cuốn sách Lý và 8! cách hoán vị các cuốn sách Hóa

Vậy theo quy tắc nhân có tất cả: 6.5!.6!.8! cách xếp

Chọn đáp án B.

27 tháng 2 2023

Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:

A.39600

B. 720

C.30888

D. 38880

NV
27 tháng 2 2023

Nghĩa là loại đi trường hợp xếp mà có sự xuất hiện của bộ Lý-Hóa-Lý nằm đúng như vầy, sát nhau đồng thời Hóa kẹp giữa 2 Lý

NV
4 tháng 10 2021

Có 4 cách chọn cuốn sách toán, 5 cách chọn cuốn sách lý, 6 cách chọn cuốn sách hóa

Theo quy tắc nhân ta có: \(4.5.6=120\) cách chọn 3 cuốn sách khác loại

NV
1 tháng 3 2023

Xếp 2 cuốn sách lý cạnh nhau: \(2!=2\) cách

Xếp 3 cuốn hóa cạnh nhau: \(3!=6\) cách

Xếp 4 cuốn toán cạnh nhau: \(4!=24\) cách

Xếp bộ 3 toán-lý-hóa: \(3!=6\) cách

Theo quy tắc nhân, ta có số cách xếp thỏa mãn là: 

\(2.6.24.6=1728\) cách

3 tháng 3 2023

Xếp 2 cuốn sách lý cạnh nhau: 2!=2 cách

Xếp 3 cuốn hóa cạnh nhau: 3!=6 cách

Xếp 4 cuốn toán cạnh nhau: 4!=24 cách

Xếp bộ 3 toán-lý-hóa: 3!=6 cách

Theo quy tắc nhân, ta có số cách xếp thỏa mãn là: 

2.6.24.6=1728 cách

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Bài này thì đâu có phải toán lớp 7 đâu bạn? Bạn chú ý đặt bài đúng lớp.

Lời giải:

Gộp hai cuốn sách cùng thể loại làm 1, ta có $2!$ cách ghép.

Khi gộp 2 cuốn làm 1, khi đó coi như trên kệ có 19 cuốn sách và cần tìm số cách sắp xếp 19 cuốn sách này.

Số cách xếp: $19!$

 

Vậy số cách xếp thỏa đề là: $2!.19!$

 

13 tháng 12 2021

19

28 tháng 4 2023

Tổng số cuốn sách Toán và Lý là : \(3+4=7\) (cuốn)

Chọn 1 trong 7 cuốn sách khác nhau gồm Toán và Lý trên có 

\(C^1_7=7\) ( cách )

Vậy có 7 cách chọn 1 cuốn sách trong số các cuốn trên.

28 tháng 4 2023

Số cách chọn 1 cuốn sách trong số 7 cuốn sách: \(C_7^1\)

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

Chọn 4 quyển sách khác nhau đủ 3 loại, có các TH sau:
TH1: 1 toán, 1 lý, 2 hóa: $A_1=C^1_6.C^1_7.C^2_8$ cách 

TH2: 2 toán, 1 lý, 1 hóa: $A_2=C^2_6.C^1_7.C^1_8$ cách 

TH3: 1 toán, 2 lý, 1 hóa: $A_3=C^1_6.C^2_7.C^1_8$ cách 

Tổng số cách: $A_1+A_2+A_3=3024$ cách