Tính tổng x 4 + y 4 b i ế t x 2 + y 2 = 18 v à x y = 5 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 2 cách giải:
- Cách 1:
\(xy+2x+3y+5=0\)
\(\Leftrightarrow x\left(y+2\right)=-3y-5\)
\(\Leftrightarrow x=\frac{-3y-5}{y+2}\)
\(\Leftrightarrow x=\frac{-3y-6}{y+2}+\frac{1}{y+2}\)
\(\Leftrightarrow x=-3+\frac{1}{y+2}\)
Để \(x\in Z\)
Mà \(-3\in Z\)
\(\Rightarrow\frac{1}{y+2}\in Z\)
\(\Rightarrow1⋮\left(y+2\right)\)
\(\Rightarrow\orbr{\begin{cases}y+2=-1\\y+2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=-1\end{cases}}\)
*Nếu y = -3 => x = - 4.
*Nếu y = -1 => x = -2.
- Cách 2: Tương tự cách 1 nhưng tính theo y.
1,
\(x^2+y^2+y^2=14\)
\(\Rightarrow\left(x+y+z\right)^2-2xy-2yz-2zx=14\)
\(\Rightarrow-2\left(xy+yz+zx\right)=14\)
\(\Rightarrow xy+yz+zx=-7\)
\(\Rightarrow\left(xy+yz+zx\right)^2=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=49\)
Ta có: \(x^4+y^4+z^4\)
\(=\left(x^2+y^2+z^2\right)^2-2x^2y^2-2y^2z^2-2z^2x^2\)
\(=14^2-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(=14^2-2.49\)
\(=196-98\)
\(=98\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{2+4-5}=6\)
=>x=12; y=24; z=30
= : Cho đơn th ứ c A= 2 xy 2 .( 1 2 22 x y x ) a)Thu g ọ n đơn th ứ c b)Tìm b ậ c c ủ a đơn th ứ c thu g ọ n c)Xác đ ị nh ph ầ n h ệ s ố ,ph ầ n bi ế n c ủ a đơn th ứ c thu g ọ n d)Tính giá tr ị c ủ a đơn th ứ c t ạ i x=2 ; y= - 1 e) Ch ứ ng minh r ằ ng A luôn nh ậ n giá tr ị dương v ớ i m ọ i x 0 và y 0 Câu 2: Tính a) 5 x 2 y - 3 x 2 y +7 x 2 y b) 1 2 32 x y z + 2 3 32 x y z - 32 3 x y z 4 c) 3 3 3 3 1 5 x y x y x y 4 2 8
b: 4x=7y nên x/7=y/4
Đặt x/7=y/4=k
=>x=7k; y=4k
Ta có: x^2+y^2=260
=>49k^2+16k^2=260
=>65k^2=260
=>k^2=4
TH1: k=2
=>x=14; y=8
TH2: k=-2
=>x=-14; y=-8
c: Đặt x/4=y/5=z/6=k
=>x=4k; y=5k; z=6k
Ta có: x^2-2y^2+z^2=18
\(\Leftrightarrow16k^2-50k^2+36k^2=18\)
=>k^2=9
TH1: k=3
=>x=12; y=15; z=18
TH2: k=-3
=>x=-12; y=-15; z=-18
1/ \(A=\left(x+3\right)\left(x-5\right)\)
\(B=2x^2-6x=2x\left(x-3\right)\)
Để A < 0 thì \(\left[\begin{matrix}\left\{\begin{matrix}x+3>0\\x-5< 0\end{matrix}\right.\\\left\{\begin{matrix}x+3< 0\\x-5>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[\begin{matrix}-3< x< 5\\\left\{\begin{matrix}x< -3\\x>5\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow-3< x< 5\)
Để B > 0 thì \(\left[\begin{matrix}\left\{\begin{matrix}x>0\\x-3>0\end{matrix}\right.\\\left\{\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[\begin{matrix}x>3\\x< 0\end{matrix}\right.\)
2/ Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\left\{\begin{matrix}x=6\\y=9\\z=12\end{matrix}\right.\)
Ta có:
$p^2=5q^2+4$ chia 5 dư 4 suy ra $p=5k+2(k\in \mathbb{N}^*)$
Ta có:
$(5k+2)^2=5q^2+4\Leftrightarrow 5k^2+4k=q^2\Rightarrow q^2\vdots k$
Mặt khác q là số nguyên tố và $q>k$ nên $k=1$. Thay vào ta được $p=7,q=3$
x4 + y4 = (x2 + y2)2-2x2 y2 = 182-2.52 = 274