K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

x4 + y4 = (x2 + y2)2-2x2 y2 = 182-2.52 = 274

15 tháng 11 2017

bài 1 Không có văn bản thay thế tự động nào.

15 tháng 11 2017

bài 2

Không có văn bản thay thế tự động nào.

23 tháng 3 2017

Có 2 cách giải:

  • Cách 1:

\(xy+2x+3y+5=0\)

\(\Leftrightarrow x\left(y+2\right)=-3y-5\)

\(\Leftrightarrow x=\frac{-3y-5}{y+2}\)

\(\Leftrightarrow x=\frac{-3y-6}{y+2}+\frac{1}{y+2}\)

\(\Leftrightarrow x=-3+\frac{1}{y+2}\)

Để \(x\in Z\)

Mà \(-3\in Z\)

\(\Rightarrow\frac{1}{y+2}\in Z\)

\(\Rightarrow1⋮\left(y+2\right)\)

\(\Rightarrow\orbr{\begin{cases}y+2=-1\\y+2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=-1\end{cases}}\)

*Nếu y = -3 => x = - 4.

*Nếu y = -1 => x = -2.

  • Cách 2: Tương tự cách 1 nhưng tính theo y.

mình k hiểu

10 tháng 10 2017

1,

\(x^2+y^2+y^2=14\)

\(\Rightarrow\left(x+y+z\right)^2-2xy-2yz-2zx=14\)

\(\Rightarrow-2\left(xy+yz+zx\right)=14\)

\(\Rightarrow xy+yz+zx=-7\)

\(\Rightarrow\left(xy+yz+zx\right)^2=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=49\)

Ta có: \(x^4+y^4+z^4\)

\(=\left(x^2+y^2+z^2\right)^2-2x^2y^2-2y^2z^2-2z^2x^2\)

\(=14^2-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)

\(=14^2-2.49\)

\(=196-98\)

\(=98\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{2+4-5}=6\)

=>x=12; y=24; z=30

= : Cho đơn th ứ c A= 2 xy 2 .( 1 2 22 x y x ) a)Thu g ọ n đơn th ứ c b)Tìm b ậ c c ủ a đơn th ứ c thu g ọ n c)Xác đ ị nh ph ầ n h ệ s ố ,ph ầ n bi ế n c ủ a đơn th ứ c thu g ọ n d)Tính giá tr ị c ủ a đơn th ứ c t ạ i x=2 ; y= - 1 e) Ch ứ ng minh r ằ ng A luôn nh ậ n giá tr ị dương v ớ i m ọ i x  0 và y  0 Câu 2: Tính a) 5 x 2 y - 3 x 2 y +7 x 2 y b) 1 2 32 x y z + 2 3 32 x y z - 32 3 x y z 4     c) 3 3 3 3 1 5 x y x y x y 4 2 8

18 tháng 10 2022

b: 4x=7y nên x/7=y/4

Đặt x/7=y/4=k

=>x=7k; y=4k

Ta có: x^2+y^2=260

=>49k^2+16k^2=260

=>65k^2=260

=>k^2=4

TH1: k=2

=>x=14; y=8

TH2: k=-2

=>x=-14; y=-8

c: Đặt x/4=y/5=z/6=k

=>x=4k; y=5k; z=6k

Ta có: x^2-2y^2+z^2=18

\(\Leftrightarrow16k^2-50k^2+36k^2=18\)

=>k^2=9

TH1: k=3

=>x=12; y=15; z=18

TH2: k=-3

=>x=-12; y=-15; z=-18

12 tháng 1 2017

1/ \(A=\left(x+3\right)\left(x-5\right)\)

\(B=2x^2-6x=2x\left(x-3\right)\)

Để A < 0 thì \(\left[\begin{matrix}\left\{\begin{matrix}x+3>0\\x-5< 0\end{matrix}\right.\\\left\{\begin{matrix}x+3< 0\\x-5>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[\begin{matrix}-3< x< 5\\\left\{\begin{matrix}x< -3\\x>5\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow-3< x< 5\)

Để B > 0 thì \(\left[\begin{matrix}\left\{\begin{matrix}x>0\\x-3>0\end{matrix}\right.\\\left\{\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[\begin{matrix}x>3\\x< 0\end{matrix}\right.\)

12 tháng 1 2017

2/ Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)

\(\Rightarrow\left\{\begin{matrix}x=6\\y=9\\z=12\end{matrix}\right.\)

22 tháng 7 2019

Ta có:

$p^2=5q^2+4$ chia 5 dư 4 suy ra $p=5k+2(k\in \mathbb{N}^*)$

Ta có:

$(5k+2)^2=5q^2+4\Leftrightarrow 5k^2+4k=q^2\Rightarrow q^2\vdots k$

Mặt khác q là số nguyên tố và $q>k$ nên $k=1$. Thay vào ta được $p=7,q=3$

22 tháng 7 2019

Gửi bài trên sai chỗ :D