Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm
c) Từ D kẻ DE, DF vuông góc với AB, AC. Tứ giác AEDF là hình gì? Tính chu vi và diện tích của tứ giác AEDF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nên tứ giác AFDE là hình vuông
* Vì DE ⊥ AB, AC ⊥ AB nên DE // AC
Theo định lí Ta-lét ta có: CD/BC = AE/AB
a, Aps dụng địnhlí Py-ta-go:
BC^2=AB^2+AC^2=6^2 + 8^2 =100
->BC=10(cm)
b, AD là phân giác góc A:=>BD/CD=AB/AC
=>BD/CD=6/8=3/4
=>BD/3=CD/4
mÀ bD+CD=10->BD/3=CD/4=(BD+CD)/7=10/7
=>bd=10/7*3=30/7(cm)
=>CD=10/7*4=40/7(cm)
c, Ta thấy:
DE vuông góc với AB
DF vg góc với AC =>> Tứ giác AEDF là hình chữ nhật mà AD là p/giac góc A=>Tứ giác AEDF là hình vuông
Góc A: vuông
Ta có: S(ABC)=S(ADB)+S(ADC)
<=>1/2AB*AC=1/2ED*AB+1/2FD*AC
Vì:DE=DF(AEDF là hình vuông)=>DE=DF=(AB*AC)/(AB+AC)=49/14=24/7(cm)
=>S(AEDF)=DE^2=11,8(cm2)
=>C(AEDF)=4DE=4*24/7=13,71(CM
a: BC=căn 6^2+8^2=10cm
sin C=AB/BC=3/5
=>góc C=37 độ
=>góc B=53 độ
b: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=10/7
=>BD=30/7cm; CD=40/7cm
c: Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
AD là phân giác của góc FAE
=>AEDF là hình vuông
a/
Áp dụng định lí Pitago vào ∆ABC vuông tại A ta được
•\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
•\(\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow\)B^\(\approx53^0\)
C^\(=90^0-53^0\approx37^0\)
b/
Vì AD là tia phân giác A^ nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\)
Mà \(DB=BC-DC=10-DC\)
Suy ra \(\dfrac{10-DC}{DC}=\dfrac{4}{6}\Rightarrow60-6.DC=4.DC\)
\(\Leftrightarrow10.DC=60\Leftrightarrow DC=6\left(cm\right)\)
Suy ra \(DB=10-6=4\left(cm\right)\)
XÉT tam giác ABC vuông tại A : BC2=AB2+AC2=36+64+100
=>BC=10.
b) áp dụng tích chất đường pg trong tam giác vào tam giác abc ta có :
AB/AC=BD/DC <=> 6/8=BD/DC<=>BD/6=DC/8=K .
=> 6K=DC ; 8K=BD .
CÓ BD+DC =BC=10
<=>6K+8K=10
<=>14K=10
<=>K=5/7 .
=>DB=5/7 . 8 = 40/7 ;DC=5/7 . 6 =30/7 .
C) TG AEDF LÀ HCN VÌ : GÓC DÈ = GÓC EAF = GÓC AFD=90'.
CHU VI VÀ DIỆN TÍCH THÌ TÍNH CẠNH EA VÀ ED THÌ RA.
a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)
hay 92 + 122 = BC2
=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm
trong tam giác ABC có: AB < AC < BC
=> góc C < góc B < góc A (định lý)
c: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác
nên AEDF là hình vuông
c: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác
nên AEDF là hình vuông
a)Theo định lý Pi-ta-go , ta có :
BC2 = AB2 + AC2
BC2 = 62 + 82
BC2 = 100
=> BC = 10
\(sinB=\frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}\)
\(\Rightarrow\widehat{B}\approx53^08^'\)
\(\Rightarrow\widehat{C}\approx90^0-\widehat{B}\approx90^0-53^08^'\approx36^052^'\)
b) AD là phân giác của \(\widehat{A}\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}=\frac{\widehat{A}}{2}=\frac{90^0}{2}=45^0\)
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{CD}{4}=\frac{CD+CD}{7}=\frac{10}{7}\)
\(\Rightarrow BD=\frac{3.10}{7}=\frac{30}{7}\)
\(\Rightarrow CD=\frac{4.10}{7}=\frac{40}{7}\)
c) Tứ giác AEDF có \(\widehat{A}=\widehat{F}=\widehat{E}=90^{^0}\)
=> AEDF là hình chữ nhật .
AD là phân giác của \(\widehat{A}\)
=> AEDF là hình vuông .
\(DE\perp AB\) \(AC\perp AB\) => DE // AC
\(\frac{CD}{BC}=\frac{AE}{AB}\) ( đl Ta lét )
=> \(AE=\frac{CD.AB}{BC}=\frac{\frac{40}{7}.6}{10}=\frac{24}{7}\)
Chu vi tứ giác AEDF = \(\frac{24}{7}.4=\frac{96}{7}\)
\(S_{AEDF}=\left(\frac{24}{7}\right)^2=\frac{576}{49}\left(cm\right)\)
c) Xét tứ giác AEDF có:
∠(EAF) = ∠(AFD) = ∠(AED) = 90 0
⇒ Tứ giác AEDF là hình chữ nhật
Lại có: ΔAFD vuông tại F, có ∠(FAD) = 45 0
⇒ ΔAFD vuông cân tại F
⇒ AF = FD
⇒ tứ giác AEDF là hình vuông
Xét tam giác DEB vuông tại D có:
Chu vi hình vuông AEDF là:
Diện tích hình vuông AEDF là: