Phần tự luận
Nội dung câu hỏi 1
Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc (O). Tiếp tuyến tại A của (O) cắt đường thẳng BC tại D. Gọi E là trung điểm của AD.
a) Chứng minh EC là tiếp tuyến của (O)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) EA và EC là 2 tiếp tuyến của (O) cắt nhau tại E
⇒ EA = EC
Lại có: OA = OC
⇒ OE là đường trung trực của đoạn AC hay OE vuông góc với AC tại trung điểm I của AC
a: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
Ta có: ΔACD vuông tại C
mà CM là đường trung tuyến ứng với cạnh huyền AD
nên CM=MA
Xét ΔMAO và ΔMCO có
MA=MC
AO=CO
MO chung
Do đó: ΔMAO=ΔMCO
Suy ra: \(\widehat{MAO}=\widehat{MCO}\)
mà \(\widehat{MAO}=90^0\)
nên \(\widehat{MCO}=90^0\)
hay MC là tiếp tuyến của (O)
b: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔABD có
O là trung điểm của AB
M là trung điểm của AD
Do đó: OM là đường trung bình của ΔABD
Suy ra: OM//BD
hay OM\(\perp\)AC
a: Xét (O) có
MA,MC là các tiếp tuyến
Do đó: MA=MC
=>\(\widehat{MAC}=\widehat{MCA}\)
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)BD tại C
=>ΔACD vuông tại C
Ta có: \(\widehat{MDC}+\widehat{MAC}=90^0\)(ΔACD vuông tại C)
\(\widehat{MCD}+\widehat{MCA}=\widehat{DCA}=90^0\)
mà \(\widehat{MAC}=\widehat{MCA}\)
nên \(\widehat{MDC}=\widehat{MCD}\)
=>MC=MD
mà MC=MA
nên MA=MD
=>M là trung điểm của AD
b: Xét (O) có
MC,MA là các tiếp tuyến
Do đó: OM là phân giác của góc AOC
=>\(\widehat{AOC}=2\cdot\widehat{MOC}\)
Ta có: tia OC nằm giữa hai tia OM và ON
=>\(\widehat{MOC}+\widehat{NOC}=\widehat{MON}=90^0\)
=>\(\widehat{NOC}=90^0-\widehat{MOC}\)
Ta có: \(\widehat{COA}+\widehat{COB}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{COM}+\widehat{COB}=2\cdot90^0=2\cdot\widehat{COM}+2\cdot\widehat{CON}\)
=>\(\widehat{COB}=2\cdot\widehat{CON}\)
=>ON là phân giác của góc COB
Xét ΔOBN và ΔOCN có
OB=OC
\(\widehat{BON}=\widehat{CON}\)
ON chung
Do đó: ΔOBN=ΔOCN
=>\(\widehat{OBN}=\widehat{OCN}=90^0\)
=>NB là tiếp tuyến của (O)
d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm
c) Tam giác CMA vuông tại M có MK là trung tuyến
⇒ MK = KA = KC
Xét Δ KAO và Δ KMO có:
KA = KM
KO là cạnh chung
AO = MO ( = bán kính (O))
⇒ Δ KAO = Δ KMO (c.c.c)
⇒ ∠(KAO) = ∠(KMO)
Mà ∠(KAO) = 90 0 ⇒ ∠(KMO) = 90 0
⇒ KM là tiếp tuyến của (O)
a) Ta có: ∠(ACB) = 90 0 (góc nội tiếp chắn nửa đường tròn)
⇒ AC ⊥ BD
ΔACD vuông tại C có CE là trung tuyến nên:
CE = EA = 1/2 AD
Xét ΔAEO và ΔCEO có:
AE = CE
EO : cạnh chung
AO = CO
⇒ ΔAEO = ΔCEO (c.c.c)
⇒ ∠(EAO) = ∠(ECO) = 90 0
⇒ CE là tiếp tuyến của (O)