K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

D = a + b a − b a 3 + b 3 a 3 − b 3 = a + b a 3 − b 3 − a − b a 3 + b 3

= a + b a − b a 2 + a b + b 2 − a − b a + b a 2 − a b + b 2

= a + b a − b a 2 + a b + b 2 − a 2 + a b − b 2 = 2 a b a + b a − b

D x = 2 a − b 2 ( a 2 + b 2 ) a 3 − b 3 = 2 a 3 − b 3 − 2 a − b a 2 + b 2

= 2 a − b a 2 + a b + b 2 − 2 a − b a 2 + b 2 = 2 a b ( a − b )

D y = a + b 2 a 3 + b 3 2 ( a 2 + b 2 ) = 2 a + b a 2 + b 2 − 2 ( a 3 + b 3 )

= 2 a + b a 2 + b 2 − 2 a + b a 2 − a b + b 2 = 2 a b ( a + b )

Với a ≠ b ;   a , b ≠ 0 ⇒ D ≠ 0 , hệ phương trình có nghiệm duy nhất

x = D x D = 2 a b a − b 2 a b a − b a + b = 1 a + b x = D y D = 2 a b a + b 2 a b a − b a + b = 1 a − b

Đáp án cần chọn là: B

a) Ta có: \(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2x-7=2\cdot2-7=-3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(2;-3)

b) Ta có: \(7x^2-2x+3=0\)

a=7; b=-2; c=3

\(\Delta=\left(-2\right)^2-4\cdot7\cdot3=4-84=-80< 0\)

Suy ra: Phương trình vô nghiệm

Vậy: \(S=\varnothing\)

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

2 tháng 2 2021

a Để hpt có nghiệm \(\left(x;y\right)=\left(-2;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}-2+3m=4\\-2n+3=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3m=6\\-2n=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=2\end{matrix}\right.\)

b Để hpt có vô số nghiệm \(\Leftrightarrow\dfrac{1}{n}=\dfrac{m}{1}=\dfrac{4}{-3}\) \(\left(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\right)\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{n}=-\dfrac{4}{3}\\m=-\dfrac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\n=-\dfrac{3}{4}\end{matrix}\right.\)

Vậy...

Bài 2: 

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(2x^2=-x+3\)

\(\Leftrightarrow2x^2+x-3=0\)

\(\Leftrightarrow2x^2-2x+3x-3=0\)

\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Thay x=1 vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot1^2=2\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)

Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)

15 tháng 12 2020

Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(\left|a\right|\ge2;\left|b\right|\ge2\right)\)

\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x^3+\dfrac{1}{x^3}\right)+\left(y^3+\dfrac{1}{y^3}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)^3-3\left(y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\a^3+b^3=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\\left(a+b\right)^3-3ab\left(a+b\right)=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\125-15ab=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\ab=9-m\end{matrix}\right.\)

\(\Rightarrow a,b\) là nghiệm của phương trình \(t^2-5t+9-m=0\left(1\right)\)

a, Nếu \(m=3\), phương trình \(\left(1\right)\) trở thành

\(t^2-5t+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y^2-3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3\pm\sqrt{5}}{2}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=3\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3\pm\sqrt{5}}{2}\\y=1\end{matrix}\right.\)

Vậy ...

b, \(\left(1\right)\Leftrightarrow t=\dfrac{5\pm\sqrt{4m-11}}{2}\left(m\ge\dfrac{11}{4}\right)\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5\pm\sqrt{4m-11}}{2}\\b=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{5\pm\sqrt{4m-11}}{2}\\y+\dfrac{1}{y}=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(5\pm\sqrt{4m-11}\right)+2=0\left(2\right)\\2y^2-\left(5\mp\sqrt{4m-11}\right)+2=0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(2\right)\) có nghiệm dương

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(5\pm\sqrt{4m-11}\right)^2-16\ge0\\\dfrac{5\pm\sqrt{4m-11}}{2}>0\\1>0\end{matrix}\right.\)

\(\Leftrightarrow...\)

30 tháng 12 2018

Từ hệ được x+y=1

a)Thay vào được x=1;y=0

b)Với mọi a

c)Thay vào x+y=1 tìm x;y

Thay ngược vào hệ tìm a

31 tháng 12 2018

a) Khi a = 2 hệ phương trình đã cho tương đương với:

 \(\hept{\begin{cases}x+2x=3\left(1\right)\\2x-y=2\left(2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=3\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\2x-2=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\2.1-2=0=y\end{cases}}\)

Do vậy \(\left(x;y\right)=\left(1;0\right)\)

b) Ta có:  \(x+y=\left(x+ax\right)-\left(ax-y\right)=3-2=1>0\forall a\)

c) Lấy (1) trừ (2),vế với vế,ta có: \(x+y=1\)

Thay vào,ta có: \(\sqrt{2}.y+y=1\Leftrightarrow y\left(\sqrt{2}+1\right)=1\)

\(\Rightarrow y=\frac{1}{\sqrt{2}+1}\Rightarrow x=1-\frac{1}{\sqrt{2}+1}=\frac{\sqrt{2}}{\sqrt{2}+1}\)

Thay vào hệ phương trình ban đầu,ta có: \(\hept{\begin{cases}\frac{\sqrt{2}}{\sqrt{2}+1}+\frac{\sqrt{2}}{\sqrt{2}+1}.a=3\left(3\right)\\\frac{\sqrt{2}}{\sqrt{2}+1}.a-\frac{\sqrt{1}}{\sqrt{2}+1}=2\left(4\right)\end{cases}}\)

Lấy (3) + (4),vế với vế,ta có: \(\frac{2\sqrt{2}}{\sqrt{2}+1}.a=5\Leftrightarrow a=\frac{10+5\sqrt{2}}{4}\)

1 tháng 4 2022

1C 2D 3A =))

 

2 tháng 4 2020

Với m =1 suy ra : 

\(\hept{\begin{cases}2x-y=1\\-x+y=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y=2x-1\\-x+2x-1=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y=2.3-1=5\\x=3\end{cases}}\)

b ) Để hệ có nghiệm x+2y=3 

\(\Rightarrow\hept{\begin{cases}x+2y=3\\-x+y=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3-2y\\-\left(3-2y\right)+y=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3-2.\frac{5}{3}=-\frac{1}{3}\\y=\frac{5}{3}\end{cases}}\)

\(\Rightarrow2.\left(-\frac{1}{3}\right)-\frac{5}{3}=2m-1\Rightarrow m=-\frac{2}{3}\)