K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

bạn học lớp 8A THCS Đền Lừ à

 

NV
21 tháng 3 2021

Bạn tham khảo:

cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge... - Hoc24

22 tháng 3 2019

lon ok

8 tháng 12 2019

Yes.

14 tháng 9 2020

ko bt nha

NV
10 tháng 1 2021

\(2=4\sqrt{xy}+2\sqrt{xz}\le2x+2y+x+z=3x+2y+z\)

Ta có:

\(VT=\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}=2\left(\dfrac{xy}{z}+\dfrac{zx}{y}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{xy}{z}\right)+2\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\)

\(VT\ge2\left(x+y+z\right)+2y+4x\)

\(VT\ge2\left(3x+2y+z\right)\ge4\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

3 tháng 5 2020

gọi a là 1 giá trị của biểu thức P, khi đó ta có a = 2xy + 3yz + 4xz

Thay z = 1 - x - y, ta được :

a = 2xy + 3y ( 1 - x - y ) + 4x ( 1 - x - y )

\(\Leftrightarrow4x^2+\left(5y-4\right)x+3y^2-3y+a=0\)

PT có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow\left(5y-4\right)^2-4.4\left(3y^2-3y+a\right)\ge0\)

\(\Leftrightarrow-23y^2+8y+16\ge16a\)

Vì \(-23y^2+8y+16=-23\left(y-\frac{4}{23}\right)^2+\frac{384}{23}\le\frac{384}{23}\)

\(\Rightarrow16a\le\frac{384}{23}\Rightarrow a\le\frac{24}{23}\Rightarrow P\le\frac{24}{23}\)

Vậy GTLN của P là \(\frac{24}{23}\)

3 tháng 5 2020

quên còn dấu "="

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+z=1\\y=\frac{4}{23}\\x=\frac{4-5y}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{9}{23}\\y=\frac{4}{23}\\z=\frac{10}{23}\end{cases}}}\)