Cho tam giác ABC nhọn, H là trực tâm và E là trung điểm của BC. Gọi I là điểm đối xứng với H qua E. H a) Chứng minh tứ giác BHCI là hình bình hành. b) Chứng minh: BỊ AB c ) Gọi O là giao điểm của các đường trung trực của tam giác ABC . Chứng minh A đối xứng với I qua O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ttứ giác BHCE có HE giao CD tại trung điểm D của cả 2 đoạn
---> Hình bình hành
2/ Vì H là trực tâm tam giác ABC
--> HC vuông góc AB
mà HC // BE do t/c cạnh đối của hình bình hành
---> đpcm
3/ Nối ID
Chứng minh được ID là đường trung bình tam giác AHE
---> ID vuông góc BC tại D, D là trung điểm BC
Gọi K là trung điểm AC
Chứng minh được IK lả đường trung bình của tam giác ACE
---> IK // CE
suy ra IK vuông góc AC tại trung điểm K của AC
Vậy.....
a, BH ^ AC và CM ^ AC Þ BH//CM
Tương tự => CH//BM
=> BHCM là hình bình hành
b, Chứng minh BNHC là hình bình hành
=> NH//BC
=> AH ^ NH => A H M ^ = 90 0
Mà A B N ^ = 90 0 => Tứ giác AHBN nội tiếp
c, Tương tự ý b, ta có: BHEC là hình bình hành. Vậy NH và HE//BC => N, H, E thẳng hàng
d, A B N ^ = 90 0 => AN là đường kính đường tròn ngoại tiếp tứ giác AHBN
AN = AM = 2R, AB = R 3 => A m B ⏜ = 120 0
S A O B = 1 2 S A B M = R 2 3 4
S A m B ⏜ = S a t A O B - S A O B = R 2 12 4 π - 3 3
=> S cần tìm = 2 S A m B ⏜ = R 2 6 4 π - 3 3
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a: Xét tứ giác BHCI có
E là trung điểm của BC
E là trung điểm của HI
Do đó: BHCI là hình bình hành