b) Chứng minh:
x + y x y - y x x y = x - y (với x>0;y>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x - y > 0
=> x - y + y > 0 + y
=> x > y (ĐPCM)
b, x > y
=> x - y > y - y
=> x - y > 0 (ĐPCM)
Xét hàm \(f\left(t\right)=\frac{ln\left(a^t+b^t\right)}{t}\) với \(t>0\)
\(f'\left(t\right)=\frac{t.\frac{a^t.lna+b^t.lnb}{a^t+b^t}-ln\left(a^t+b^t\right)}{t^2}=\frac{a^tlna^t-a^tln\left(a^t+b^t\right)+b^tlnb^t-b^tln\left(a^t+b^t\right)}{\left(a^t+b^t\right)t^2}\)
\(=\frac{a^t.\left(lna^t-ln\left(a^t+b^t\right)\right)+b^t\left(lnb^t-ln\left(a^t+b^t\right)\right)}{\left(a^t+b^t\right)t^2}< 0\)
\(\Rightarrow f\left(t\right)\) nghịch biến \(\Leftrightarrow f\left(x\right)< f\left(y\right)\Leftrightarrow x>y>0\)
\(\Leftrightarrow\frac{ln\left(a^x+b^x\right)}{x}< \frac{ln\left(a^y+b^y\right)}{y}\)
\(\Leftrightarrow y.ln\left(a^x+b^x\right)< x.ln\left(a^y+b^y\right)\)
\(\Leftrightarrow ln\left(a^x+b^x\right)^y< ln\left(a^y+b^y\right)^x\)
\(\Leftrightarrow\left(a^x+b^x\right)^y< \left(a^y+b^y\right)^x\)
x/y + y/x>=2
<=> (x2+ y2)/xy>=2
<=> x2+y2>=2xy
<=> x2 - 2xy + y2>=0
<=> (x-y)2>=0
xảy ra (x-y)2=0 khi x=y
Giả sử \(x,y\in Q,x=\frac{a}{b},y=\frac{c}{d},a,b,c,d\in Z;b,d>0\)
a) Nếu \(x>y\), nghĩa là \(\frac{a}{b}>\frac{c}{d}\). Ta có:
\(ad-bc>0.\) Vì \(b>0,d>0,bd>0\) nên
\(\frac{ad-bc}{b.d}>\frac{0}{b.d}=0\Rightarrow\frac{a.d}{b.d}-\frac{b.c}{b.d}>0\\ \Rightarrow\frac{a}{b}-\frac{c}{d}>0,\)
tức là \(x-y>0\)
b) Ngược lại nếu \(x-y>0\), nghĩa là
\(\frac{a}{b}-\frac{c}{d}>0\Rightarrow\frac{a.d}{b.d}-\frac{b.c}{b.d}>0\\ \Rightarrow\frac{a.d-b.c}{b.d}>\frac{0}{b.d}\\ \Rightarrow a.d-b.c>0\Rightarrow a.d>b.c\\ \Rightarrow\frac{a.d}{b.d}>\frac{b.c}{b,d}\Rightarrow\frac{a}{b}>\frac{c}{d}\)
Tức là \(x>y\)
\(A=\left(x-2+\frac{1}{x}\right)+2y-3=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+2y-3\ge-3\)
\(\left(1\right)\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\) mọi x>0
\(\left(2\right)2y\ge0\) với mọi y>0
\(\left(3\right)-3\ge-3\) với x,y
(1)+(2)+(3)=> dpcm
Hiểu thì làm tiếp
b) Với x > 0; y > 0 ta có:
x + y x y - y x x y = x y x - y x y = x + y x - y = x - y
= ( x + y )( x - y ) = x - y