Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GT: \(\Delta ABC\) nhọn
\(\Delta ABD\)vuông cân tại A
\(\Delta ACE\)vuông cân tại A
\(ÀH\perp BC\), \(AH\)cắt \(DE\)tại M
KL: a) \(\Delta ABD=\Delta ACD\)
b) \(DC\perp BE\)
c) M trung điểm DE
a ) Xét \(\Delta AKB\) và \(\Delta AKC\) có :
AK : cạn chung
AB = AC ( gt)
BK = KC ( K là trung điểm của BC )
\(\Rightarrow\Delta AKB=\Delta AKC\left(c.g.c\right)\)
Ta có :
+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AK\perp BC\)
b ) Vì :
\(\hept{\begin{cases}EC\perp BC\left(gt\right)\\AK\perp BC\left(cmt\right)\end{cases}}\)
\(\Rightarrow EC//AK\) ( tuef vuông góc đến song song )
d ) Vì \(EC\perp BC\left(gt\right)\)
\(\Rightarrow\widehat{BCE}=90^o\)
Vậy \(\widehat{BCE}=90^o\)
a) Xét \(\Delta AKB\) và \(\Delta\)AKC có:
AK chung
AB = AC (gt)
KB = KC (K là trung điểm BC)
\(\Rightarrow\)\(\Delta\)AKB = \(\Delta\)AKC (c-c-c)
b) Do \(\Delta AKB\) = \(\Delta AKC\) (cmt)
\(\Rightarrow\) \(\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)
Mà \(\widehat{AKB}\) và \(\widehat{AKC}\) là hai góc kề bù
\(\Rightarrow\) \(\widehat{AKB}=\widehat{AKC}\) \(=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow\) AK \(\perp\) BC
a) Xét ΔAKB và ΔAKC có:
AB=AC(gt)
AK:cạnh chung
BK=CK(gt)
=> ΔAKB=ΔAKC(c.c.c)
=> \(\widehat{AKB}=\widehat{AKC}\)
Mà: \(\widehat{AKB}+\widehat{AKC}=180^o\)
=> \(\widehat{AKB}=\widehat{AKC}=90^o\)
=> \(AK\perp BC\)
b) Vì: \(EC\perp BC\left(gt\right)\)
Mad: \(AK\perp BC\left(cmt\right)\)
=> EC//AK
a) Xét \(\Delta AKB\) và \(\Delta AKC\) , có :
AK là cạnh chung
AB = AC ( gt )
BK = KC ( K là trung điểm của BC )
=> \(\Delta AKB=\Delta AKC\left(cgc\right)\)
Ta có :
+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )
Mà góc AKB + AKC = 1800 ( 2 góc kề bù )
=> AKB = AKC= \(\frac{180^0}{2}\)= 900
Vậy AK \(\perp BC\)
b)
Ta có :
AK \(\perp BC\) ( Theo câu a )
EC \(\perp BC\) ( gt )
=> EC // AK
c) Tam giác BCE là tam giác vuông
GÓC BEC = 500