K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

Đáp án B

Phương pháp : Chia hai trường hợp :

TH1 : Học sinh TWO làm được 2 trong số 3 bài trong đề thi.

TH2 : Học sinh TWO làm được cả 3 bài trong đề thi.

Cách giải :  Ω = C 2 n 3

TH1 : Học sinh TWO làm được 2 trong số 3 bài trong đề thi. Có  C n 2 . C n 1  cách

TH2 : Học sinh TWO làm được cả 3 bài trong đề thi. Có  C n 3  cách

Gọi A là biến cố học sinh TWO không phải thi lại

Đến đây chọn một giá trị bất kì của n rồi thay vào là nhanh nhất, chọn n =10 , ta tính được  P ( A ) = 1 2

Đề thi học sinh giỏi môn Toán lớp 630 đề thi học sinh giỏi môn Toán lớp 6 dưới đây sẽ là tài liệu ôn thi học sinh giỏi, ôn thi hết học kỳ 2, luyện thi học sinh giỏi môn Toán cực kỳ hữu ích cho các bạn học sinh lớp 6. Mời các bạn tải bộ đề thi này về và luyện tậpTrong bài viết này, VnDoc xin gửi bạn đề thi học sinh giỏi cấp huyện môn Toán lớp 6 với các dạng bài tập hay và sát...
Đọc tiếp

Đề thi học sinh giỏi môn Toán lớp 6

30 đề thi học sinh giỏi môn Toán lớp 6 dưới đây sẽ là tài liệu ôn thi học sinh giỏi, ôn thi hết học kỳ 2, luyện thi học sinh giỏi môn Toán cực kỳ hữu ích cho các bạn học sinh lớp 6. Mời các bạn tải bộ đề thi này về và luyện tập

Trong bài viết này, VnDoc xin gửi bạn đề thi học sinh giỏi cấp huyện môn Toán lớp 6 với các dạng bài tập hay và sát với đề thi chính thức giúp các bạn ôn luyện và trau dồi kiến thức sẵn sàng cho kỳ thi quan trọng này. Mời các bạn làm bài và tham khảo đáp án ở phần cuối.

ĐỀ SỐ 1

Thời gian làm bài: 120 phút

Câu 1: (2 điểm) Cho biểu thức:  

                                               Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

a, Rút gọn biểu thức

b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

Câu 2: (1 điểm)

Tìm tất cả các số tự nhiên có 3 chữ số  sao cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

Câu 3: (2 điểm)

a. Tìm n để n2 + 2006 là một số chính phương

b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.

Câu 4: (2 điểm)

a. Cho a, b, n thuộc N*. Hãy so sánh Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

b. Cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán. So sánh A và B.

Câu 5: (2 điểm)

       Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Câu 6: (1 điểm)

       Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.

ĐỀ SỐ 2

Thời gian làm bài: 120 phút

Câu 1:

a. Tìm các số tự nhiên x, y. sao cho (2x + 1)(y – 5) = 12

b.Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1

c. Tìm tất cả các số Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán, biết rằng số B chia hết cho 99

Câu 2.

a. Chứng tỏ rằng Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán là phân số tối giản.

b. Chứng minh rằng: Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

Câu 3:

       Một bác nông dân mang cam đi bán. Lần thứ nhất bán 1/2số cam và 1/2 quả; Lần thứ 2 bán 1/3 số cam còn lạivà 1/3 quả; Lần thứ 3 bán 1/4 số cam còn lại và 3/4 quả. Cuối cùng còn lại 24 quả. Hỏi số cam bác nông dân đã mang đi bán.

Câu 4:

       Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có ba đường thẳng nào đồng quy. Tính số giao điểm của chúng.

ĐỀ SỐ 3

Thời gian làm bài: 120 phút

Bài 1: (1,5 điểm) Tìm x

a) 5x = 125;                b) 32x = 81;

c) 52x-3 – 2.52 = 52.3;

Bài 2: (1,5 điểm)

Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5

Bài 3: (1,5 điểm)

Cho a là một số nguyên. Chứng minh rằng:

a. Nếu a dương thì số liền sau a cũng dương.

b. Nếu a âm thì số liền trước a cũng âm.

c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?

Bài 4: (2 điểm)

Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương.

Bài 5: (2 điểm)

      Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.

Bài 6: (1,5 điểm)

     Cho tia Ox. Trên hai nữa mặt phẳng đối nhau có bờ là Ox. Vẽ hai tia Oy và Oz sao cho góc xOy và xOz bằng 1200. Chứng minh rằng:

a. Góc xOy = xOz = yOz

b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại.

2
7 tháng 10 2016

Đề thi học sinh giỏi môn Toán lớp 6

30 đề thi học sinh giỏi môn Toán lớp 6 dưới đây sẽ là tài liệu ôn thi học sinh giỏi, ôn thi hết học kỳ 2, luyện thi học sinh giỏi môn Toán cực kỳ hữu ích cho các bạn học sinh lớp 6. Mời các bạn tải bộ đề thi này về và luyện tập

Trong bài viết này, VnDoc xin gửi bạn đề thi học sinh giỏi cấp huyện môn Toán lớp 6 với các dạng bài tập hay và sát với đề thi chính thức giúp các bạn ôn luyện và trau dồi kiến thức sẵn sàng cho kỳ thi quan trọng này. Mời các bạn làm bài và tham khảo đáp án ở phần cuối.

ĐỀ SỐ 1

Thời gian làm bài: 120 phút

Câu 1: (2 điểm) Cho biểu thức:  

                                               Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

a, Rút gọn biểu thức

b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

Câu 2: (1 điểm)

Tìm tất cả các số tự nhiên có 3 chữ số  sao cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

Câu 3: (2 điểm)

a. Tìm n để n2 + 2006 là một số chính phương

b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.

Câu 4: (2 điểm)

a. Cho a, b, n thuộc N*. Hãy so sánh Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

b. Cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán. So sánh A và B.

Câu 5: (2 điểm)

       Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Câu 6: (1 điểm)

       Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.

ĐỀ SỐ 2

Thời gian làm bài: 120 phút

Câu 1:

a. Tìm các số tự nhiên x, y. sao cho (2x + 1)(y – 5) = 12

b.Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1

c. Tìm tất cả các số Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán, biết rằng số B chia hết cho 99

Câu 2.

a. Chứng tỏ rằng Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán là phân số tối giản.

b. Chứng minh rằng: Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

Câu 3:

       Một bác nông dân mang cam đi bán. Lần thứ nhất bán 1/2số cam và 1/2 quả; Lần thứ 2 bán 1/3 số cam còn lạivà 1/3 quả; Lần thứ 3 bán 1/4 số cam còn lại và 3/4 quả. Cuối cùng còn lại 24 quả. Hỏi số cam bác nông dân đã mang đi bán.

Câu 4:

       Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có ba đường thẳng nào đồng quy. Tính số giao điểm của chúng.

ĐỀ SỐ 3

Thời gian làm bài: 120 phút

Bài 1: (1,5 điểm) Tìm x

a) 5x = 125;                b) 32x = 81;

c) 52x-3 – 2.52 = 52.3;

Bài 2: (1,5 điểm)

Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5

Bài 3: (1,5 điểm)

Cho a là một số nguyên. Chứng minh rằng:

a. Nếu a dương thì số liền sau a cũng dương.

b. Nếu a âm thì số liền trước a cũng âm.

c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?

Bài 4: (2 điểm)

Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương.

Bài 5: (2 điểm)

      Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.

Bài 6: (1,5 điểm)

     Cho tia Ox. Trên hai nữa mặt phẳng đối nhau có bờ là Ox. Vẽ hai tia Oy và Oz sao cho góc xOy và xOz bằng 1200. Chứng minh rằng:

a. Góc xOy = xOz = yOz

b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại.

TỰ ĐI MÀ LÀM ĐI,ĐỒ NHIỀU CHUYỆN

24 tháng 10 2016

Thanks bạn, HSG kỳ 1 ak

14 tháng 7 2015

Gọi y là số hs còn lại ( y thuộc N*) 
và x là số học sinh giỏi của cuối học kì 1 
điều kiện như y 
ta có: x=3/7y 
theo đề bài ra thì: 3/7y + 3 = 2/3y 
giải ra thì đc y=63/5 
=> x =3/7 nhân 63/5 
và x= 27/5 
rùi cộng thêm 3 đc 42/5 
vậy số hs giỏi của lớp là 42/5 hs 

30 tháng 6 2017

42/5 học sinh

26 tháng 1 2023

 HK1 số học sinh giỏi chiếm số phần của hs cả lớp là 
    3:(3+7)=3/10
HK2 số học sinh giởi chiếm số phần cả lớp là 
   2:(2+3)=2/5
 Phân số chỉ 3 học sinh là 
   2/5-3/10=1/10
 số học sinh đạt điểm giỏi giữa kì 2 là 
     (3x10)x2/5=12 học sinh 

1 tháng 2 2023

Cuối HK1,số học sinh đạt loại giỏi =3/7 số học sinh còn lại nên số số học sinh đạt loại giởi =3/3+7=3/10 số học sinh cả lớp.

Giữa HK2, số học sinh đạt loại giỏi =2/3 số học sinh còn lại nên số học sinh đạt loại giỏi=2/5 số học sinh cả lớp.

3 học sinh chỉ: 2/5-3/10=1/10 số học sinh cả lớp

Số học sinh cả lớp; 3:1/10=30 học sinh

Số học sinh đạt điểm giỏi giữa học kì 2 môn toán: 30x2/5=12 học sinh

Đáp số: 12 học sinh

28 tháng 3 2022

phân tích: Cuối kì 1 học sinh đạt loại giỏi bằng 3/7 số học sinh còn lại nên học sinh giỏi 3+7=3/10 số hs cả lớp 

Giữa học kì hai số hs đạt loại giỏi bằng 2/3 số hs còn lại nên số hs giỏi bằng 2/5 số hs cả lớp.

số hs cả lớp là 

3.1/10=30

 số hs giỏi lớp 5a là

30 nhân 2/5=12

Chúc bạn học tốt, tuy có hơi rườm rà nhưng chắc chắn đúng, mong bạn tặng coin.

27 tháng 12 2015

chẳng có ai trả lời hết ,vậy thì mình trả lời luôn cho:

Ta có :

_Có 5 cách chọn câu số 1 cho đề thi 

_Có 4 cách chọn câu số 2 cho đề thi

_Có 3 cách chọn câu số 3 cho đề thi

Số đề thi được lập là :

5 x 4 x 3 =60 (đề thi)

Nhưng nếu làm như vậy thì mỗi đề thi được tính đến 6 lần , chẳng hạn đề thi gồm các câu (1,2,3)sẽ trùng với các đề thi :(1,3,2);(2,1,3;(2,3,1);(3,1,2);(3,2,1)

Thực sự số đề thi là :

60 : 6 =10 (đề thi )

Ta có :31:10=3

Vậy có ít nhất 4 học sinh làm cùng đề thi

17 tháng 2 2016

cảm ơn đã chỉ cho mình cách giải nhé

10 tháng 5 2016

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

   \(=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

    \(=3\left(2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^8}-\frac{1}{2^9}\right)\)

    \(=3\left(2-\frac{1}{2^9}\right)=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)

10 tháng 5 2016

Quy luật của nó là gì vậy sao lại 2+22+.....+28 hoặc 210

Mà bạn lại ghi là 29 quy luật của nó là gì 

Bài 1. Kỳ thi học sinh giỏi huyện môn toán , ba khối 6,7,8 có tất cả 200 học sinh dự thi. Tính số học sinh dự thi môn toán của từng khối ,biết nếu tăng 3/13 số học sinh dự thi môn toán khối 6 , tăng 1/15 số học sinh dự thi môn toán khối 7 và tăng 1/3 số học sinh dự thi môn toán khối 8 thì số học sinh dự thi 3 khối bằng nhau.Bài 2. Người thợ thứ nhất làm 1 dụng cụ mất 12 phút , người thợ...
Đọc tiếp

Bài 1. Kỳ thi học sinh giỏi huyện môn toán , ba khối 6,7,8 có tất cả 200 học sinh dự thi. Tính số học sinh dự thi môn toán của từng khối ,biết nếu tăng 3/13 số học sinh dự thi môn toán khối 6 , tăng 1/15 số học sinh dự thi môn toán khối 7 và tăng 1/3 số học sinh dự thi môn toán khối 8 thì số học sinh dự thi 3 khối bằng nhau.
Bài 2. Người thợ thứ nhất làm 1 dụng cụ mất 12 phút , người thợ thứ 2 làm 1 dụng cụ mất 8 phút . Trong thời gian người thợ thứ nhất 48 dụng cụ , thì người thứ 2 làm được bao nhiêu dụng cụ.
Bài 3: Ba máy xay xay được 359 tấn thóc. Số ngày làm việc của các máy tỉ lệ với 3:4:5. Số giờ làm việc của các máy tỉ lệ theo 6:7:8 , công suất các máy tỉ lệ với 12,15,20. Hỏi mỗi máy xay được bao nhiêu tấn thóc.
Bài 4: Khối lớp 7 của một trường THCS có 3 lớp , với tổng số là 120 học sinh. Nhà trường quyết định chuyển 1 học sinh của lớp 7B và 2 học sinh của lớp 7C sang lớp 7A thì số học sinh ở các lớp 7A,7B,7C lần lượt tỉ lệ với 21,20,19. Tính số học sinh ban đầu của mỗi lớp.

0