tìm số tự nhiên n, biết:
a) 3 < 3n+1 < 243
b)5n . 5n+1 . 5n+2 <1012 :212
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hồi trước mình làm mỏi tay mà không ****, giờ không làm nữa âu
ĐẶT d thuộc ƯC (3n+4;5n+1)
Ta có :3n+4chia hết cho d và 5n+1 chia hết cho d nên 5.(3n+34)-3.(5n+1)=(15n+20)-(15n+3)=15n+20-15n-3=(15n-15n)+(20-3)-(15n+3)=15n+20-15n-3=(15n-15n) + (20-3)=17 chia hết cho d
Vì n thuộc ƯC (3n+4;5n+1)khác 1 thì phải có 3n+4 chia hết cho 17 suy ra 3n+4-34=3n+(-30)=3n-30=3n-3.10=3(n-10)chia hết cho 17 ( vì 43 cx chia hết cho 17)
Ta lại có ƯCLN (3,17)=1 nên n-10 chia hết cho 17 suy ra n-10 thuocj B(17)
DO n<30 nên n-1thuoocj (0;17)
Vậy n thuocj (10,17)
a, Ta có 3(n + 4 ) \(⋮\) (n+ 4)
\(\Rightarrow\) 3(n + 4) = 3n + 12.
Xét tổng (16 - 3n) + (3n + 12)
= 16 - 3n + 3n + 12
= 28 (khử n)
Để (16 - 3n) \(⋮\)(n+4) thì 28 \(⋮\)(n+4)
\(\Rightarrow\) n+ 4\(\in\) Ư(28) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28}
Vì n+ 4 \(\ge\) 4 \(\Rightarrow\) n+4 \(\in\) { 4 ; 7 ; 14 ; 28}
+ n + 4 = 4
n = 4 - 4
n = 0
+ n + 4 = 7
n = 7 - 4
n = 3
+ n + 4 = 14
n = 14 - 4
n = 10
+ n + 4 = 28
n = 28 - 4
n = 24
Vậy n \(\in\) { 0 ; 3 ; 10 ; 24}
b, Làm dạng giống phần a. Hãy động não một chút.
a) 16 - 3n chia hết cho n +4
n+ 4 chia hết cho n+4
=) (16 - 3n ) - ( n + 4) chia hết cho n + 4
16 - 3n - n- 4 chia hết n + 4
12 +4n chia hết cho n +4
= ) n +4 thuộc Ư ( 12 + 4n )
?????
hic mới biết làm tới đây thông cảm
À, có cách đơn giản hơn:
a/Ta đã có điều kiện n<1 mà n là số tự nhiên suy ra n = 0 , thay vào thỏa mãn.
b/ Ta cũng có điều kiện n < 5 mà n là số tự nhiên nên suy ra n = 0,1,2,3,4 thay vào xem giá trị nào thỏa mãn thì lấy
a/ Để (16-3n) chia hết cho (n+4) thì thương \(A=\frac{16-3n}{n+4}\) nhận giá trị nguyên.
Xét \(\frac{16-3n}{n+4}=\frac{-3\left(n+4\right)+28}{n+4}=\frac{28}{n+4}-3\)
Từ đó suy ra A nhận giá trị nguyên khi (n+4) thuộc các ước của 28 .
Bạn liệt kê ra nhé :)
Câu 1:
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)
Câu 2:
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)