Tìm n,m thuộc Z :1/m+n/6=1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1/m + n/6 = 1/2
1/m = 1/2 - n/6
1/m = 3n-6/6m
6/6m = (3-n)m/6m
(3-m)m = 6= (-1).(-6)= (-2).(-3)=1.6=2.3
Sâu đó p thử từng trường hợp (phải thử ngược lại)
Ta có:
1/m + n/6 = 1/2
1/m = 1/2 - n/6
1/m =3-n/6
6/6m = (3-n)m/6m
(3-n).m = 6 =(-1).(-6)=(-2).(-3)=1..6=2.3
Sau đó bạn thử từng trường hợp nhé.phải thử ngược lại nữa đấy
\(\frac{1}{m}+\frac{n}{6}=\frac{1}{2}\Leftrightarrow\frac{6}{6m}+\frac{mn}{6m}=\frac{1}{2}\Leftrightarrow\frac{6+mn}{6m}=\frac{1}{2}\)
\(\Rightarrow2\left(6+mn\right)=6m\Leftrightarrow6+mn=3m\Leftrightarrow mn-3m+6=0\)
\(\Leftrightarrow m\left(n-3\right)=-6\Leftrightarrow m=\frac{-6}{n-3}=\frac{6}{3-n}\)(*)
Để m nhận giá trị nguyên thì \(\frac{6}{3-n}\in Z\Rightarrow6⋮3-n\Rightarrow\)3-n là ước nguyên của 6 (Do n thuộc Z)
\(\Rightarrow3-n\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
\(\Rightarrow n\in\left\{2;1;0;-3;4;5;6;9\right\}\)
Thay 3 - n vào (*) ta có giá trị tương ứng của m: \(m\in\left\{6;3;2;1;-6;-3;-2;-1\right\}\)
Vậy \(\left(m;n\right)\in\left\{\left(6;2\right);\left(3;1\right);\left(2;0\right);\left(1;-3\right);\left(-6;4\right);\left(-3;5\right);\left(-2;6\right);\left(-1;9\right)\right\}.\)
Lời giải:
$\frac{1}{m}+\frac{n}{6}=\frac{1}{2}$
$\Rightarrow \frac{mn+6}{6m}=\frac{1}{2}=\frac{3m}{6m}$
$\Rightarrow mn+6=3m$
$\Rightarrow m(n-3)=-6$
Do $m,n$ nguyên nên ta xét các TH sau:
TH1: $m=1, n-3=-6\Rightarrow m=1; n=3$
TH2: $m=-1, n-3=6\Rightarrow m=-1; n=9$
TH3: $m=2, n-3=-3\Rightarrow m=2; n=0$
TH4: $m=-2, n-3=3\Rightarrow m=-2; n=6$
TH5: $m=3, n-3=-2\Rightarrow m=3; n=1$
TH6: $m=-3, n-3=2\Rightarrow m=-3; n=5$
TH7: $m=6, n-3=-1\Rightarrow m=6; n=2$
TH8: $m=-6, n-3=1\Rightarrow m=-6; n=4$