K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình:

ABC68HD

~~~

a/ A/dụng pitago vào tam giác ABC v tại A có:

BC2=AB2+AC2=62+82=100⇒BC=10(cm)BC2=AB2+AC2=62+82=100⇒BC=10(cm)

Áp dụng hệ thức lượng trong tam giác v ABC có:

+) AB2 = BC . BH => BH=AB2BC=3610=3,6(cm)BH=AB2BC=3610=3,6(cm)

=> HC = BC - BH = 10 - 3,6 = 6,4(cm)

+) AH2 = BH . HC = 3,6 . 6,4 = 23,04

=> AH = 4,8 (cm)

b/ Vì AD là p/g góc BAC

=> BDDC=ABAC⇒BDAB=DCAC=BD+DCAB+AC=BC6+8=106+8=57BDDC=ABAC⇒BDAB=DCAC=BD+DCAB+AC=BC6+8=106+8=57

=> ⎧⎩⎨⎪⎪⎪⎪BD=57⋅6=307(cm)DC=57⋅8=407(cm)

 Chúc bạn hok tốt ^^

By Ryu

11 tháng 10 2023

\(BC=\sqrt{3^2+4^2}=5\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{12}{5}cm\)

\(AD=\sqrt{bc\left(1-\left(1-\dfrac{a}{b+C}\right)^2\right)}=\dfrac{4\sqrt{3}}{7}\)

11 tháng 10 2023

Bạn giải kỹ giúp mình dc ko ạ

 

a: BC=10cm

Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạngvới ΔHBA

b: AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

30 tháng 3 2021

A B C H D

30 tháng 3 2021

a)

Xét \(\Delta ABC\) và \(\Delta HBA\) có:

           \(\widehat{B}:chung\)

      \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)           \(\left(ĐPCM\right)\)

a: Xét ΔABH có BI là phân giác

nên \(\dfrac{AI}{AB}=\dfrac{IH}{BH}\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

Đề bài này chưa đủ dữ kiện để tính cụ thể AI/AB; AD/AB nha bạn

b: ΔBAD vuông tại A

=>\(\widehat{ABD}+\widehat{ADB}=90^0\)

=>\(\widehat{ADI}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\left(1\right)\)

ΔBIH vuông tại H

=>\(\widehat{HBI}+\widehat{BIH}=90^0\)

=>\(\widehat{BIH}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\)(2)

Từ (1) và (2) suy ra \(\widehat{ADI}=\widehat{BIH}\)

mà \(\widehat{AID}=\widehat{BIH}\)(hai góc đối đỉnh)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A

=>AD=AI(3)

Xét ΔABH có BI là phân giác

nên \(\dfrac{IH}{BH}=\dfrac{AI}{AB}\left(4\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{DC}{BC}=\dfrac{DA}{AB}\left(5\right)\)

Từ (3),(4),(5) suy ra \(\dfrac{IH}{BH}=\dfrac{DC}{BC}\)

10 tháng 12 2023

1+1=2

a: Xét ΔBAC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=5(cm)

b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2,4\left(cm\right)\\BH=1,8\left(cm\right)\\CH=3,2\left(cm\right)\end{matrix}\right.\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ