Cho 2a/3=3b/4=4c/5 và a-b+c=15
Tìm a,b,c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}\)
\(\frac{a}{\frac{3}{2}}=\frac{b}{\frac{4}{3}}=\frac{2c}{\frac{5}{2}}\) \(=\frac{a-b+2c}{\frac{3}{2}-\frac{4}{3}+\frac{5}{2}}\)\(=\frac{6}{\frac{8}{3}}=\frac{9}{4}\)
\(\begin{cases}a=\frac{27}{8}\\b=3\\c=\frac{45}{8}\end{cases}\)
2a=3b=>a/3=b/2=>a/6=b/4 (1)
3b=4c=>b/4=c/3 (2)
từ (1) và (2) => a/6=b/4=c/3
từ đó dùng tính chất dãy tỉ số = nhau là đc nha!
Vì 2a/3b=3b/4c=4c/5d=5d/2a nên suy ra 2a=3b=4c=5d ( Theo công thức dãy tỉ số bằng nhau)
=> 2a/3b=3b/4c=4c/5d=5d/2a=1
=>C=1+1+1+1=4
Vậy C=4
Tìm a,b,c biết rằng : \(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}\) và a + b + c = 49
Giải:
Ta có : \(\frac{2a}{3}=\frac{a}{\frac{3}{2}}\), \(\frac{3b}{4}=\frac{b}{\frac{4}{3}}\), \(\frac{4c}{5}=\frac{c}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{3}{2}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{5}{4}}=\frac{a+b+c}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{a}{\frac{3}{2}}=12\\\frac{b}{\frac{4}{3}}=12\\\frac{c}{\frac{5}{4}}=12\end{cases}}\)=> \(\hept{\begin{cases}a=18\\b=16\\c=15\end{cases}}\)