K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

\(\frac{x}{z}=\frac{z}{y}\)\(xy=\text{x}^{2}\)

\(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{\text{x}^{2}+xy}{\text{y}^{2}+xy}\)=\(\frac{x(x+y)}{y(x+y)}\)=\(\frac{x}{y}\)

\(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{x}{y}\)

Vậy \(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{x}{y}\)

26 tháng 10 2020

giải hộ nhá

29 tháng 10 2020

Đặt \(\frac{x}{z}=\frac{z}{y}=k\)

\(\left\{{}\begin{matrix}x=zk\\z=yk\end{matrix}\right.\)

Khi đó

\(\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+\left(yk\right)^2}{y^2+z^2}=\frac{k^2z^2+k^2y^2}{y^2+z^2}=\frac{k^2\left(z^2+y^2\right)}{y^2+z^2}=k^2\)

\(\frac{x}{y}=\frac{zk}{y}=\frac{ykk}{y}=k^2\)

Do đó \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\left(=k^2\right)\)

2 tháng 2 2022

\(2\left(x-y\right)^2=\left(z-x\right)\left(z-y\right)\Leftrightarrow\frac{2\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}=1\)

\(\frac{2\left(z-y\right)^2}{\left(z-x\right)\left(z-y\right)}=\frac{\left(x-y\right)^2}{z\left(x-y\right)}=\frac{x-y}{z}\Rightarrow x-y=z\)

NV
4 tháng 5 2020

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

Dấu "=" xảy ra khi \(x=y=z\)

Hoặc:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2\left(y+z\right)}{4\left(y+z\right)}}=x\)

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ; \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng vế với vế ta có đpcm

16 tháng 5 2020

\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)

27 tháng 6 2020

\(VT-VP=\Sigma\frac{\left(x+y\right)\left(x-y\right)^2}{y^2}\ge0\)

22 tháng 1 2017

Cậu đăng từng ý mình giải cho

22 tháng 1 2017

cậu giải từng ý cho mik cũng được ko phai giải 2 cÁI 1 LÚC ĐÂU