Các bn hướng dẫn chi tiết nhẩm nghiệm hữu tỉ phân tích đa thức thành nhân tử với. VD như : \(27x^3-27x^2+18x-4\). Cám ơn các bạn rất nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
\(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=\left(27x^3-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)
\(=9x^2.\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
\(27x^3-27x^2+18x-4\)
\(=27x^3-18x^2+12x-9x^2+6x-4\)
\(=3x\left(9x^2-6x+4\right)-\left(9x^2-6x+4\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
27x3 - 27x2 + 18x - 4
= 27x3 - 9x2 - 18x2 + 6x + 12x - 4
= 9x2 ( 3x - 1 ) - 6x ( 3x - 1 ) + 4 ( 3x - 1 )
= ( 9x2 - 6x + 4 ) ( 3x - 1 )
a) \(2x^3-x^2+5x+3\)
\(=2x^3-2x^2+x^2+6x-x+3\)
\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(27x^3-27x^2+18x-4\)
\(=27x^3-18x^2-9x^2+12x+6x-4\)
\(=\left(27x^3-18x^2+12x\right)-\left(9x^2-6x+4\right)\)
\(=3x\left(9x^2-6x+4\right)-\left(9x^2-6x+4\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
a) 9x4+16y6-24x2y3
=(3x2)2-2.3x2.4y3+(4y3)2
=(3x2-4y3)2
b) 16x2-24xy+9y2
=(4x)2-2.4x.3y+(3y)2
=(4x-3y)2
c) 36x2-(3x-2)2
=(36x-3x+2)(36x+3x-2)
=(33x+2)(39x-2)
d) 27x3+54x2y+36xy2+8y3
=(3x)3+3.(3x)2.2y+3.3x.(2y)2+(2y)3
=(3x+2y)3
e) y9-9x2y6+27x4y3-27x6
=(y3)3-3.(y3)2.3x2+3.y3.(3x2)2-(3x2)3
=(y3-3x2)3
f) 64x3+1
= (4x)3+13
=(4x+1)[(4x)2-4x.1+12]
=(4x+1)(16x2-4x+1)
e) 27x6-8x3 *sửa đề*
=(3x2)3-(2x)3
=(3x2-2x)[(3x)2+3x2.2x+(2x)2]
=(3x2-2x)(9x2+6x3+4x2)
~~~
Nếu thế how to phân tích cái 2x^2 =)))) đề sai
2x^2 phân tích như thế nào để đặt nhân tử chung hoặc nhóm hạng tử đây???? Xem lại đề bạn ơi
Phương pháp :
+) Ta nhẩm các ước nguyên của hệ số tự do
+) Trong trường hợp ước nguyên của hệ số tự do không là nghiệm của đa thức, ta thử vs các số là (ước của hệ số tự do)/(ước của hệ số bậc cao nhất của đa thức) <Lưu ý nên thử từ bé đến lớn :)))
Trong trường hợp thử 2 trường hợp trên không đc thì dùng hệ số bất định!!! (Có lần ra nghiệm nguyên :v nhưng bấm sai => mình dùng hệ số bất định, nháp 3 trang làm vào 3 dòng :vv)