tìm x ,biết:
\(\sqrt{x+1-2\sqrt{x}}-\sqrt{x+16-8\sqrt{x}}=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(ĐK:x\in R\)
2) \(ĐK:x< 0\)
3) \(ĐK:x\in\varnothing\)
4) \(=\sqrt{\left(x+1\right)^2+2}\)
\(ĐK:x\in R\)
5) \(=\sqrt{-\left(a-4\right)^2}\)
\(ĐK:x\in\varnothing\)
1) xài qui nạp để cm \(\sqrt{1^3+2^3+...+x^3}=1+2+3+...+x=\frac{x\left(x+1\right)}{2}\)
2) a) Vô nghiệm vì ĐKXĐ không tm
b) auto do
2.
A=\(\sqrt{\sqrt{\left(\sqrt{16}-\sqrt{12}\right)^2}}-\sqrt{\sqrt{\left(\sqrt{16}+\sqrt{12}\right)^2}}\)
\(=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{1}\right)^2}\)
\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)\)
\(=\sqrt{3}-1-\sqrt{3}-1\)
\(=-2\)
B= \(\sqrt{5-2\sqrt{2+\sqrt{\left(\sqrt{8}+\sqrt{1}\right)^2}}}\)
\(=\sqrt{5-2\sqrt{2+\sqrt{8}+1}}\)
\(=\sqrt{5-2\sqrt{3+2\sqrt{2}}}\)
\(=\sqrt{5-2\sqrt{\left(\sqrt{2}+\sqrt{1}\right)^2}}\)
\(=\sqrt{5-2\sqrt{2}-2}\)
\(=\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}\)
\(=\sqrt{2}-1\)
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé
a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7
Lời giải:
a)
PT \(\Leftrightarrow \sqrt{(3x-1)^2}=\sqrt{(x+4)^2}\)
\(\Leftrightarrow |3x-1|=|x+4|\)
\(\Rightarrow \left[\begin{matrix} 3x-1=x+4\\ 3x-1=-(x+4)\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2.5\\ x=-0.75\end{matrix}\right.\)
Vậy........
b) ĐK: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}+\sqrt{(x-1)-6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}+\sqrt{(\sqrt{x-1}-3)^2}=5\)
\(\Leftrightarrow |\sqrt{x-1}+2|+|\sqrt{x-1}-3|=5\)
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
\(|\sqrt{x-1}+2|+|\sqrt{x-1}-3|=|\sqrt{x-1}+2|+|3-\sqrt{x-1}|\geq |\sqrt{x-1}+2+3-\sqrt{x-1}|=5\)
Dấu "=" xảy ra khi \((\sqrt{x-1}+2)(3-\sqrt{x-1})\geq 0\)
\(\Leftrightarrow -2\leq \sqrt{x-1}\leq 3\)
\(\Leftrightarrow 1\leq x\leq 10\)
Vậy.........
a, \(\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow x-2=3\Leftrightarrow x=5\)
b, \(\sqrt{x^2-10x+25}=x+3\Leftrightarrow\sqrt{\left(x-5\right)^2}=x+3\)
\(\Leftrightarrow x-5=x+3\Leftrightarrow0\ne8\)( vô nghiệm )
a. ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)
\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)
Pt trở thành:
\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)
\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)
\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)
\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)
b.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)
Pt trở thành:
\(t=t^2-4-16\Leftrightarrow...\)