Cho (O), dây BC. Trên cung lớn BC lấy A sao cho O luôn nằm trong tam giác ABC. Các đường cao AD,BE,CF cắt nhau tại H.
C/m AO vuông góc với EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta giải như sau :
a) 1. Góc ACF + Góc BAC = 90 độ ; Góc EBA + BAC = 90 độ => Góc ACF = Góc EBA (cùng phu với Góc BAC)
Mà ACF và EBA là hai góc chắn cung EF của tứ giác EFBC và bằng nhau
=> Tứ giác EFBC nội tiếp.
2. Ta có : BE vuông góc với AC tại E ; CK vuông góc với AC tại C (Vì góc ACK chắn nửa cung tròn đường kính AK)
=> BE // CK (1)
Tương tự ta cũng có : BK // CF (2)
Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (dhnb)
b) Vì tứ giác BHCK là hình bình hành nên hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Mà M là trung điểm của BC => M cũng là trung điểm HK
Xét tam giác AHK có AM và HO lần lượt là hai đường trung tuyến ( AO = OK ; HM = MK) cắt nhau tại I
=> I là trọng tâm tam giác AHK
Lại có AM là đường trung tuyến tam giác ABC và I thuộc AM => I là trọng tâm tam giác ABC
c) Mình chưa nghĩ ra :))
giải như sau :
a) 1. Góc ACF + Góc BAC = 90 độ ; Góc EBA + BAC = 90 độ => Góc ACF = Góc EBA (cùng phu với Góc BAC)
Mà ACF và EBA là hai góc chắn cung EF của tứ giác EFBC và bằng nhau
=> Tứ giác EFBC nội tiếp.
2. Ta có : BE vuông góc với AC tại E ; CK vuông góc với AC tại C (Vì góc ACK chắn nửa cung tròn đường kính AK)
=> BE // CK (1)
Tương tự ta cũng có : BK // CF (2)
Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (dhnb)
b) Vì tứ giác BHCK là hình bình hành nên hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Mà M là trung điểm của BC => M cũng là trung điểm HK
Xét tam giác AHK có AM và HO lần lượt là hai đường trung tuyến ( AO = OK ; HM = MK) cắt nhau tại I
=> I là trọng tâm tam giác AHK
Lại có AM là đường trung tuyến tam giác ABC và I thuộc AM => I là trọng tâm tam giác ABC
b) \(\widehat{NAB}=\widehat{AFE}=\widehat{ACB}\) nên NA là tiếp tuyến của (O).
Do O, N nằm trên đường trung trực của AB nên A, B đối xứng với nhau qua ON.
Từ đó NB là tiếp tuyến của (O).
c) Do NA là tiếp tuyến của (O) nên \(\Delta NAL\sim\Delta NKA(g.g)\)
\(\Rightarrow\dfrac{NA}{NK}=\dfrac{AL}{KA}=\dfrac{NL}{NA}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\dfrac{NA}{NK}.\dfrac{NL}{NA}=\dfrac{NL}{NK}\).
Tương tự do NB là tiếp tuyến của (O) nên \(\left(\dfrac{BL}{KB}\right)^2=\dfrac{NL}{NK}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\left(\dfrac{BL}{KB}\right)^2\Rightarrow\dfrac{AL}{KA}=\dfrac{BL}{KB}\Rightarrow\dfrac{AL}{BL}=\dfrac{KA}{KB}=\dfrac{2R}{KB}\).
Từ đó \(\dfrac{BK.AL}{BL}=2R\) không đổi \(\).
Sửa lại đề là đường tròn (HDS) đi qua một điểm cố định.
Ta có \(\widehat{ASE}=\widehat{EAS}=\widehat{OCA}\) nên tứ giác OECS nội tiếp. Từ đó \(AO.AS=AE.AC=AH.AD\). Suy ra tứ giác OHDS nội tiếp nên đường tròn ngoại tiếp tam giác HDS đi qua O cố định
a: góc HEC+góc HDC=90+90=180 độ
=>HECD nội tiếp
b: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>FE vuông góc OA
a) Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\)
=> AEHF là tứ giác nt
b) Xét tứ giác BCEF có 2 góc \(\widehat{BFC}\)và \(\widehat{CEB}\)cùng nhìn đoạn BC một góc 90o
=> BCEF là tứ giác nt
=> \(\widehat{KBF}=\widehat{KEC}\)(cùng bù với \(\widehat{FBC}\))
Xét \(\Delta KBF\)và \(\Delta KEC\)có
\(\widehat{KBF}=\widehat{KEC}\)
\(\widehat{CKE}\)chung
=> \(\Delta KBF\)ᔕ \(\Delta KEC\)(g-g)
=> \(\frac{KB}{KE}=\frac{KF}{KC}\)
=> KB . KC = KE . KF (1)
c) Nối M với B
Xét (O) có tứ giác AMBC nội tiếp đường tròn đó
=> \(\widehat{KBM}=\widehat{KAB}\)
Xét \(\Delta KBM\)và \(\Delta KAC\)có
\(\widehat{KBM}=\widehat{KAC}\)
\(\widehat{AKC}\)chung
=> \(\Delta KBM\)ᔕ \(\Delta KAC\)(g.g)
=> \(\frac{KB}{KA}=\frac{KM}{KC}\)=> KB . KC = KA . KM (2)
Từ (1) (2) => KE . KF = KA . KM
=> \(\frac{KF}{KA}=\frac{KM}{KE}\)
Xét \(\Delta KFMvà\Delta KAE\)có
\(\widehat{AFE}\)chung
\(\frac{KF}{KA}=\frac{KM}{KE}\)
=> \(\Delta KFM\)ᔕ \(\Delta KAE\)(g-g) <=> \(\widehat{KMF}=\widehat{KEA}\)hay \(\widehat{KMF}=\widehat{FEA}\)
Xét tứ giác AMFE có \(\widehat{KMF}=\widehat{FEA}\)=> AMFE là tứ giác nội tiếp
=> A, M, F ,E cùng thuộc một đường tròn
Mà A, F, H,E cùng thuộc một đường tròn (AFHE là tgnt)
=> A,F,M,H,E cùng thuộc một đường tròn
=> AMHE là tứ giác nt
=> \(\widehat{AMH}+\widehat{AEH}=180^o\)=> \(\widehat{AMH}=180^o-\widehat{AEH}=180^o-90^o=90^o\)
=> \(MH\perp AK\)
PHẦN D NGHĨ SAU NHÉ
d) À mik có ghi thiếu. Câu d c/m: MH cố định khi A di chuyển trên cung lớn BC
Do tứ giác BCEF nội tiếp nên ME . MF = MB . MC
Lại có tứ giác BCKA nội tiếp nên MC . MB = MK . MA
Suy ra MK . MA = ME . MF nên tứ giác AKEF nội tiếp.
Mà tứ giác AEHF nội tiếp nên 5 điểm A, E, F, H, K đồng viên.
Suy ra \(\widehat{HKA}=\widehat{HEA}=90^o\Rightarrow HK\perp AM\).