Phân tích đa thức sau thành nhân tử:
\(\frac{x^4}{2}-2x^2\)
Giúp tớ với nheee
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tôi làm tạm theo cách này nhé.
\(x^4-2x^2-114x-1295\)
\(=\frac{d}{dx}\left(x^4-2x^2-114x-1295\right)\)
\(=4x^3-4x-114-0\)
\(=4x^3-4x-114\)
Bạn Phương Lê Nhật ơi!!!!
Đây là Toán 8 bạn ạ
Bạn giải mk ko hiểu j cả
Giải cụ thể đc ko bạn ạ
a) \(x\left(x+4\right)\left(x-4\right)-\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)
bạn ktra lại đề
b) \(x^4+2x^3+5x^2+4x-12\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
mk lm lun nhe
=x2.[x4-x2+2x+2]
=x2.[x2[x2-1]+2[x+1] ]
=x2.[x2[x-1].[x+1]+2[x+1] ]
x2[x+1].[x3-x2+2]
\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
\(=2x^4+6x^3+9x^2+6x+2\)(bạn nhân phá ngoặc rồi thu gọn nhé)
\(=\left(2x^4+2x^3+x^2\right)+\left(4x^3+4x^2+2x\right)+\left(4x^2+4x+2\right)\)
\(=x^2\left(2x^2+2x+1\right)+2x\left(2x^2+2x+1\right)+2\left(2x^2+2x+1\right)\)
\(=\left(x^2+2x+2\right)\left(2x^2+2x+1\right)\)
b. 2x3-3x2+3x-1=2x3-x2-2x2+x+2x-1
= x2(2x-1)-x(2x-1)+(2x-1)
=(2x-1)(x2-x-1)
c. 3x3-14x2+4x+3= 3x3+x2-15x2-5x+9x+3
=x2(3x+1)-5x(3x-1)+3(3x+1)
=(3x+1)(x2-5x+3)
Theo đề ta có:
\(\frac{x^4}{2}-2x^2\)
\(=\frac{x^4-4x^2}{2}\)
\(=\frac{x^2\left(x^2-4\right)}{2}\)
\(=\frac{x^2\left(x-2\right)\left(x+2\right)}{2}\)