Cho tứ giác ABCD. E; F lần lượt là trung điểm của AB; CD. EF chia tứ giác thành 2 phần có diện tích bằng nhau.
CMinh : ABCD là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
Qua C kẻ đường thẳng song song với BD cắt AD ở E. Do BD//CE nên SBDC = SBDE;
Từ đó ta có:
AABCD = SABD + SBDC = SABD + SBDE = SABE.
Qua B kẻ đường thẳng song song với AC, cắt DC ở E. Gọi M là trung điểm của DE, ta có AM là đường thẳng cần dựng. Theo bài 4A, ta chứng minh được SABCD = SADE.
Mà theo cách dựng điểm M ta có SADM = 0.5.SABCD hay đoạn AM chia tứ giác thành 2 phần có diện tích bằng nhau
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
Chứng minh EFGH là hình bình hành. Để EFGH là hình chữ nhật thì
Þ H E F ^ = 90 0 ⇒ H E ⊥ E F
Þ AC ^BD.
làm ơn làm phước tick mình lên 60 với