1, Rút gọn các phân thức sau :
a, \(\dfrac{5x}{10}\)
b, \(\dfrac{4xy}{2y}\) ( y # 0)
c, \(\dfrac{21x^2y^3}{6xy}\) ( xy # 0)
d, \(\dfrac{2x+2y}{4}\)
e, \(\dfrac{5x-5y}{3x-3y}\) ( x # y)
f, \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}\) ( x # y)
2, Rút gọn các phân thức sau :
a, \(\dfrac{x^2-16}{4x-x^2}\) ( x # 0, x # 4)
b, \(\dfrac{x^2+4x+3}{2x+6}\) ( x # -3)
c, \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}\) ( y + ( x+y) # 0)
d,...
Đọc tiếp
1, Rút gọn các phân thức sau :
a, \(\dfrac{5x}{10}\)
b, \(\dfrac{4xy}{2y}\) ( y # 0)
c, \(\dfrac{21x^2y^3}{6xy}\) ( xy # 0)
d, \(\dfrac{2x+2y}{4}\)
e, \(\dfrac{5x-5y}{3x-3y}\) ( x # y)
f, \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}\) ( x # y)
2, Rút gọn các phân thức sau :
a, \(\dfrac{x^2-16}{4x-x^2}\) ( x # 0, x # 4)
b, \(\dfrac{x^2+4x+3}{2x+6}\) ( x # -3)
c, \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}\) ( y + ( x+y) # 0)
d, \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\) ( x # y)
e, \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}\) (x # -y)
a, Trừ vế theo vế hai phương trình ta được
\(x^2+6y-y^2-6x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=6-y\end{matrix}\right.\)
Nếu \(x=y,pt\left(1\right)\Leftrightarrow x^2+x=5x+3\)
\(\Leftrightarrow x^2-4x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=2+\sqrt{7}\\x=y=2-\sqrt{7}\end{matrix}\right.\)
Nếu \(x=6-y,pt\left(2\right)\Leftrightarrow y^2+6-y=5y+3\)
\(\Leftrightarrow y^2-6y+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=3+\sqrt{6}\\y=3-\sqrt{6}\end{matrix}\right.\)
\(y=3+\sqrt{6}\Rightarrow x=3-\sqrt{6}\)
\(y=3-\sqrt{6}\Rightarrow x=3+\sqrt{6}\)
b, Trừ vế theo vế hai phương trình
\(3x^3-3y^3=y^2-x^2\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2+xy+y^2+x+y\right)=0\)
Từ \(pt\left(1\right)\) \(3x^3=y^2+2>0\Rightarrow x>0\)
Tương tự \(y>0\)
\(\Rightarrow x^2+xy+y^2+x+y>0,\forall x;y\)
\(\Rightarrow x=y\)
\(pt\left(1\right)\Leftrightarrow3x^3=x^2+2\)
\(\Leftrightarrow3x^3-x^2-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x^2+2x+2\right)=0\)
\(\Leftrightarrow x=y=1\left(\text{vì }3x^2+2x+2=2x^2+\left(x+1\right)^2+1>0\right)\)