Cho A là tổng các bình phương của 111 STN liên tiếp nào đó. CMR: A không phải là SCP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
Gọi 3 số nguyên liên tiếp là n-1; n; n+1
Tổng bình phương của chúng là: A = (n-1)2 + n2 + (n+1) 2 = 3n2 + 2
Suy ra A chia 3 dư 2.
Xét bình phương của một số n.
+Nếu n = 3k thì n2 = 3k2 -> chia hết cho 3
+Nếu n = 3k+1 thì n2 = (3k+1)2 = 9k2 + 6k + 1 = 3(3k2+2k) + 1 -> chia 3 dư 1
+Nếu n = 3k+2 thì n2 = (3k+2)2 = 9k2 + 6k + 4 = 3(3k2+2k+1) + 1 -> chia 3 dư 1
Vậy một số chính phương chia 3 dư 1 hoặc không dư.
Mà A chia 3 dư 2 => A không phải là số chính phương.
Gọi 3 số nguyên liên tiếp là n-1; n; n+1
Tổng bình phương của chúng là: \(A=\left(n-1\right)^2+n^2+\left(n+1\right)^2=3n^3+2\)
Suy ra A chia 3 dư 2.
Xét bình phương của một số n.
+Nếu n = 3k thì n2 = 3k2 -> chia hết cho 3
+Nếu n = 3k+1 thì n2 = (3k+1)2 = 9k2 + 6k + 1 = 3(3k2+2k) + 1 -> chia 3 dư 1
+Nếu n = 3k+2 thì n2 = (3k+2)2 = 9k2 + 6k + 4 = 3(3k2+2k+1) + 1 -> chia 3 dư 1
Vậy một số chính phương chia 3 chỉ dư 1 hoặc không dư.
Mà A chia 3 dư 2 => A không phải là số chính phương.
ta có : a^3+(a+1)^3+(a+2)^3=a^3+a^3x1^3+a^3x2^3=a^3+a^3+a^3x8=a^3x(1+1+8)=a^3x10