Cho a,b,c là 3 số không đồng thời bằng 0. Chứng minh có ít nhất 1 trong các biểu thức sau đây có giá trị dương:
\(A=\left(a+b+c\right)^2-8ab\)
\(B=\left(a+b+c\right)^2-8bc\)
\(C=\left(a+b+c\right)^2-8ac\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có ghi sai đề không vậy? Mình nghĩ đẳng thức cuối nó là \(z=\left(a-b+c\right)^2+8ca\).
Khi đó theo nguyên lí Dirichlet, trong 3 số \(a,b,c\) sẽ tồn tại 2 số nằm cùng phía so với 0 (cùng lớn hơn 0 hoặc cùng bé hơn 0). Giả sử 2 số này là \(a,b\). Khi đó hiển nhiên \(ab>0\) (do a, b cùng dấu), từ đó suy ra \(x=\left(a-b+c\right)^2+8ab>0\) , đpcm.
#)Giải :
a) Để C/m a và b là hai số đối nhau => a + b = 0
Ta có : \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab+b^2=0\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0a\Leftrightarrow a+b=0\)
\(\Rightarrowđpcm\)
Ta có (a-b+c)^2 luôn dương vì bingf phương của một số luôn dương
Vì cả 3 số a;b;c đều có vai trò như nhau nên
Giả sử:1+cả 3 số đều âm
2+một trong 3 số có 1 số bằng không(c=0)
3+hai số âm:một số dương (a;b âm)
4+một số âm;2 số dương(a âm)
13 sốâm thì tích 2 số dương *8ab dương(đpcm)
2 tích 2 số bằng 0 *8bc;8ca=0
3 tích 2 số dương 8ab dương
4 tích 2 số còn lại dương*8bc dương
vậy................
Do a;b;c ko đồng thời bằng 0 nên \(a^2+b^2+c^2>0\)
Giả sử cả 3 biểu thức đều không dương
\(\Rightarrow A+B+C\le0\)
\(\Leftrightarrow3\left(a+b+c\right)^2-8\left(ab+bc+ca\right)\le0\)
\(\Leftrightarrow3a^2+3b^2+3c^2-2ab-2bc-2ca\le0\)
\(\Leftrightarrow a^2+b^2+c^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\le0\) (vô lý do \(a^2+b^2+c^2>0\) và 3 số hạng còn lại đều ko âm)
Vậy điều giả sử là sai hay ít nhất 1 trong 3 biểu thức phải dương
:D
\(\frac{1}{a\left(a^2+8bc\right)}+\frac{1}{b\left(b^2+8ca\right)}+\frac{1}{c\left(c^2+ab\right)}\le\frac{1}{3abc}\)
\(\Leftrightarrow\frac{1}{\frac{a^2}{bc}+8}+\frac{1}{\frac{b^2}{ca}+8}+\frac{1}{\frac{c^2}{ab}+8}\le3\) (*)
Đặt \(\frac{a^2}{bc}=x;\frac{b^2}{ca}=y;\frac{c^2}{ab}=z\left(x,y,z>0\right)\)
(*)\(\Leftrightarrow\frac{1}{x+8}+\frac{1}{y+8}+\frac{1}{z+8}\le\frac{1}{3}\)
\(\Leftrightarrow16\left(x+y+z\right)+5\left(xy+yz+zx\right)\ge63\)(**)
(**) đúng bởi \(x+y+z\ge3\sqrt[3]{xyz}=3;xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}=3\)