K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

$x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}$

$=(x+\frac{1}{2})^2+\frac{3}{4}$

$\geq 0+\frac{3}{4}$

$> 0$

Ta có đpcm.

Ta có: \(2x^2+2x+1\)

\(=2\left(x^2+x+\frac{1}{2}\right)\)

\(=2\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)

\(=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)

hay \(2x^2+2x+1>0\forall x\)(đpcm)

23 tháng 9 2020

Này giải chi tiết cho mk cái bước 3 và 4 đi Nguyễn Lê Phước Thịnh

23 tháng 9 2020
https://i.imgur.com/QBCcqpP.jpg
23 tháng 9 2020

Đặt 2 ra ngoài thì đỡ phải dùng căn đó bnbanhqua

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

Ta thấy:

$9x^2-6x+2=(9x^2-6x+1)+1$

$=[(3x)^2-2.3x+1^2]+1=(3x-1)^2+1$

Vì $(3x-1)^2\geq 0$ với mọi $x$

$\Rightarrow 9x^2-6x+2=(3x-1)^2+1\geq 1>0$ với mọi $x$

Ta có đpcm.

30 tháng 4 2020

https://hoc247.net/hoi-dap/toan-8/chung-minh-a-x-10-x-9-x-4-x-1-0-faq392123.html

8 tháng 8 2018

Xét hàm số h(x) trên [0; + ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12Giải sách bài tập Toán 12 | Giải sbt Toán 12

Dấu “=” xẩy ra chỉ tại x = 0 nên h(x) đồng biến trên nửa khoảng [0; + ∞ ).

Vì h(x) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hay

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét hàm số trên f(x) trên [0; + ∞ );

Giải sách bài tập Toán 12 | Giải sbt Toán 12Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì g(0) = 0 và g(x) đồng biến trên nửa khoảng [0; + ∞ ) nên g(x) ≥ 0, tức là f′(x)  ≥ 0 trên khoảng đó và vì dấu “=” xảy ra chỉ tại x = 0 nên f(x) đồng biến trên nửa khoảng .

Mặt khác, ta có f(0) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với mọi 0 < x < +

10 tháng 7 2017

a) Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0; π/2);

Giải sách bài tập Toán 12 | Giải sbt Toán 12

x ∈ [0;1/2)

Dấu “=” xảy ra khi x = 0.

Suy ra f(x) đồng biến trên nửa khoảng [0; π/2)

Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x ∈ [0; 1/2)

b) Xét hàm số h(x) trên [0; + ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Dấu “=” xẩy ra chỉ tại x = 0 nên h(x) đồng biến trên nửa khoảng [0;  + ∞ ).

Vì h(x) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hay

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét hàm số trên f(x) trên [0;  + ∞ );

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì g(0) = 0 và g(x) đồng biến trên nửa khoảng [0;  + ∞ ) nên g(x) ≥ 0, tức là f′(x) ≥ 0 trên khoảng đó và vì dấu “=” xảy ra chỉ tại x = 0 nên f(x) đồng biến trên nửa khoảng .

Mặt khác, ta có f(0) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với mọi 0 < x <  + ∞ .

3 tháng 2 2022

Dễ thấy:

     \(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)

Áp dụng Cô-si:

     \(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)

Do đó:

     \(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)