x(x+2)+y(y-2)-2xy+65
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2+2x+y^2-2y-2xy+65\)
\(=\left(x-y\right)^2+2\left(x-y\right)+65\)
Mà \(x=y+5\)
\(\Rightarrow x-y=5\)
- Thay x - y = 5 vào đa thức trên ta được :
\(=\left(x-y\right)^2+2\left(x-y\right)+65=100\)
Vậy ...
vì x=5+y => x-y=5
đặt \(A=x^2+y\left(y-2x\right)+75\)
\(=x^2+y^2-2xy+75\)
\(=\left(x-y\right)^2+75\)
\(=5^2+75\)
=100
b) đặt \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+65\)
\(=x^2+2x+y^2-2y-2xy+65\)
\(=\left(x^2+y^2-2xy\right)+\left(2x-2y\right)+65\)
\(=\left(x-y\right)^2+2\left(x-y\right)+65\)
\(=5^2+2.5+65\)
=100
a.
(x^2 + y^2 - 2xy) + (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy + x^2 + y^2 + 2xy
= (x^2 + x^2) + (y^2 + y^2) + (2xy - 2xy)
= 2x^2 + 2y^2
b.
(x^2 + y^2 - 2xy) - (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy - x^2 - y^2 - 2xy
= (x^2 - x^2) + (y^2 - y^2) - (2xy + 2xy)
= -4xy
\(\dfrac{x}{x^2+2xy+y^2}+\dfrac{2y}{x+y}+\dfrac{y}{x^2+2xy+y^2}\)
\(=\dfrac{x+y}{\left(x+y\right)^2}+\dfrac{2y}{x+y}\)
\(=\dfrac{1}{x+y}+\dfrac{2y}{x+y}=\dfrac{2y+1}{x+y}\)
Lần sau bạn ghi đúng lớp ạ
x( x + 2 ) + y( y - 2 ) - 2xy + 65
= x2 + 2x + y2 - 2y - 2xy + 65
= ( x2 - 2xy + y2 ) + ( 2x - 2y ) + 65
= ( x - y )2 + 2( x - y ) + 65
Rồi x - y bằng bao nhiêu bạn thế vô
Good luck
Tiếng Anh lớp 1 ?