Tìm x biết \(\frac{2}{5}+\frac{3}{5}:x=\frac{9}{11}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{5}+\frac{3}{5}:x=\frac{9}{11}=>\frac{3}{5}:x=\frac{9}{11}-\frac{2}{5}=\frac{23}{55}=>x=\frac{3}{5}:\frac{23}{55}=\frac{3}{5}.\frac{55}{23}=\frac{33}{23}\)
\(3x.\left(x-\frac{2}{3}\right)=0\)
\(\Leftrightarrow3x=0\)hoặc \(x-\frac{2}{3}=0\)
\(3x=0\Rightarrow x=0\)
\(x-\frac{2}{3}=0\Rightarrow x=0+\frac{2}{3}=\frac{2}{3}\)
Vậy..
a) Ta có : \(\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}=\frac{x+5}{11}+\frac{x+5}{13}\)
\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\left(\frac{x+5}{11}+\frac{x+5}{13}\right)=0\)
\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\frac{x+5}{11}-\frac{x+5}{13}=0\)
\(\Rightarrow\left(x+5\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\right)=0\)
Do \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\ne0\)
\(\Rightarrow x+5=0\Rightarrow x=-5\)
Vậy x = -5
b) Ta có : \(\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}\)
\(\Rightarrow\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}+3=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}+3\)
\(\Rightarrow\frac{x+2}{100}+1+\frac{x+3}{99}+1+\frac{x+4}{98}+1=\frac{x+5}{97}+1+\frac{x+6}{96}+1+\frac{x+7}{95}+1\)
\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}=\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\)
\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\left(\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\right)=0\)
\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\frac{x+102}{97}-\frac{x+102}{96}-\frac{x+102}{95}\)
\(\Rightarrow\left(x+102\right)\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Do \(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)
\(\Rightarrow x+102=0\Rightarrow x=-102\)
Vậy x = -102
c) Ta có : (x + 2) - (x + 3) = x + 2 - x - 3
= x - x + 2 - 3
= -1
mà (x + 2) - (x + 3) > 0 => không tồn tại x sao cho (x + 2) - (x + 3) > 0
d) Ta có : \(\left(x-5\right)\left(x+\frac{7}{3}\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}x\ge5\\x\ge\frac{-7}{3}\end{cases}}\)
\(\Rightarrow x\ge\frac{-7}{3}\)
Vậy \(x\ge\frac{-7}{3}\)
\(\frac{33}{23}\)