K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

\(y=\left(m-1\right)x\) 

\(M\left(-1;2\right)\Rightarrow x=-1;y=2\) 

\(2=\left(m-1\right)\cdot-1\) 

\(2=-m+1\) 

\(1=-m\)  

\(m=-1\) 

b. 

\(y=\left(m-1\right)x\)  

\(y=\left(-1-1\right)x\)  

\(y=-2x\)

1 tháng 12 2017

Hàm số y = (m-1 )x +2 có phần hệ số a = m-1 , b = 2

Hàm số y = 3x +1 có phần hệ số a' = 3 , b' = 1

Để hàm số y = ( m -1)x +2 song song với hàm số y = x+3 thì

\(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Rightarrow m-1=3\Rightarrow m=4\)

Vậy...

b, Để đồ thị đi qua điểm M(2;-2) \(\Leftrightarrow-2=\left(m-1\right).2+2\)

\(\Leftrightarrow2m-2+2=-2\)

\(\Leftrightarrow m=-1\)

12 tháng 6 2018

a )

Đồ thị parapol P đi qua điểm M khi a là nghiệm của phương trình :

\(2=a.2^2\)

\(\Leftrightarrow4a=2\)

\(\Leftrightarrow a=\dfrac{1}{2}\)

a; Thay x=2 và y=-1 vào y=(2m+1)x, ta được:

4m+2=-1

=>4m=-3

hay m=-3/4

a: Thay x=1 và y=-3 vào y=(m-1)x, ta được:

m-1=-3

hay m=-2

b: f(x)=-3x

f(2/3)=-2

f(-4)=12

c:f(-1)=3 nên M thuộc đồ thị

f(6)=-18<>-9 nên N không thuộc đồ thị

9 tháng 10 2019

a ) Để hàm số nghịch biến \(\Leftrightarrow\hept{\begin{cases}m< 0\\m\ne0\end{cases}\Leftrightarrow m< 0}\)

b ) Đồ thị hàm số đi qua điểm M (3 ; 2) nên ta có :
\(2=m.3+1\Leftrightarrow3m=1\Leftrightarrow m=\frac{1}{3}\)

Khi đó hàm số đã cho có dạng : \(y=\frac{1}{3}x+1\)

- Nếu \(x=0\Rightarrow y=1\) . Ta có điểm A ( 0;1) \(\in Oy\)

- Neus \(y=0;x=-3\) . Ta có điểm  B \(\left(-3;0\right)\in Ox\)

Đường thẳng đi qua 2 điểm A , B là đò thị của hàm số \(y=\frac{1}{3}x+1\)

O A B y x -3 1

c ) Gọi điểm  \(N\left(x_o;y_0\right)\) là điểm cố định mà với mọi giá trị của m 

Khi đó ta có : \(mx_o+1=y_o\) , vơi mọi m 

\(\Leftrightarrow mx_o+\left(1-y_0\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x_0=0\\1-y_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0=1\end{cases}}}\)

Vậy N ( 0 ; 1) là điểm cố định của đồ thị hàm số đã cho

18 tháng 12 2016

a) Để hàm số nghịch biến \(\Leftrightarrow\begin{cases}m< 0\\m\ne0\end{cases}\)\(\Leftrightarrow m< 0\)

b)Đồ thị hàm số đi qua điểm M(3;2) nên ta có:

\(2=m\cdot3+1\Leftrightarrow3m=1\Leftrightarrow m=\frac{1}{3}\)

Khi đó hàm só đã xho có dạng \(y=\frac{1}{3}x+1\)

-Nếu \(x=0\Rightarrow y=1\) . Ta có điểm \(A\left(0;1\right)\in Oy\)

-Nếu \(y=0\Rightarrow x=-3\).Ta có điểm \(B\left(-3;0\right)\in Ox\)

Đường thẳng đi qua 2 điểm A,B là đồ thị của hàm số \(y=\frac{1}{3}x+1\)

x O y 1 -3 A B

c) Gọi diểm \(N\left(x_0;y_0\right)\) là điểm cố định mà với mọi giá trị của m

Khi đó ta có: \(mx_0+1=y_0\) , với mọi m

\(\Leftrightarrow mx_0+\left(1-y_0\right)=0\)

\(\Leftrightarrow\begin{cases}x_0=0\\1-y_0=0\end{cases}\)\(\Leftrightarrow\begin{cases}x_o=0\\y_0=1\end{cases}\)

Vậy \(N\left(0;1\right)\) là điểm cố dịnh của đồ thị hàm số đã cho