Cho a,b là chữ số khác 0 . chứng tỏ rằng ab + ba chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{ab}\) + \(\overline{ba}\) = \(a\times\) 10 + \(b\) + \(b\times\) 10 + \(a\) = \(a\times11\) + \(b\times\)11
\(\overline{ab}\) + \(\overline{ba}\) = (\(a\) + \(b\))\(\times\) 11
Vì 11 ⋮ 11 ⇒ (\(a+b\))\(\times\) 11 ⋮ 11 ⇒ \(\overline{ab}\) + \(\overline{ba}\) ⋮ 11 (đpcm)
ab +ba=a x10 +b +b x10 +a=a x[10+1] + b x[10+1]
=a x 11 + b x 11=[a+b] x11
mà : 11chia hết cho 11 nên 11:11=[a+b]
suy ra : a+b có thể là bất kì số gì khác 0
Bởi vì a,b là 2 chữ số khác 0 nên:
ab+ba đặt tính rồi tính ta có
ab Ta có: a+b b+a nên a+b=b+a
+ Ví dụ: cho a=2,b=1
ba Ta có: 21+12=33(chia hết cho 11)
_____
c, Ta có ab+ba = 10a + 10b + a + b=11a + 11b
Vậy ab+ba chia hết cho 11
a) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10 x a + b) - (10 x b + a)
= (10 x a - a) - (10 x b - b)
= 9 x a - 9 x b
= 9 x (a - b) \(⋮\)9
=> (ab - ba) \(⋮\)9 (đpcm)
b) Ta có : ab + ba = a0 + b + b0 + a
= 10 x a + b + b x 10 + a
= (10 x a + a) + (10 x b + b)
= 11 x a + 11 x b
= 11 x (a + b) \(⋮\)11
=> (ab + ba) \(⋮\)11 (đpcm)
a) Ta có : ab - ba
= ( 10 x a + b ) - ( 10 x b + a )
= ( 10 x a - a ) - ( 10 x b - b )
= 9 x a - 9 x b
= 9 x ( a - b )
\(\Rightarrow\)ab - ba chia hết cho 9
b) Ta có: ab + ba
= ( 10 x a + b ) + ( 10 x b + a )
= ( 10 x a + a ) + ( 10 x b + b )
= 11 x a + 11 x b
= 11 x ( a + b )
\(\Rightarrow\)ab + ba chia hết cho 11
Nhớ k chị nha. Chúc em học tốt.
a)Ta có:
ab-ba =a.10+b-b.10-a
=a.9-b.9
Mà a > b nên thương nhỏ nhất của hai số sẽ bằng 9.
=> ab-ba luôn chia hết cho 9
b) ab+ba =a.10+b+b.10+a
=a.11+b.11
=(a+b).11
=> ab+ba luôn chia hết cho 11
a) ab=a.10+b
ba=b.10+a
ab-ba=10a+b-10b-a
=9a-9.b
Giả sử a lớn hơn b n đơn vị, ta có:
(b+n)9-9b
=n.9 => ab-ba luôn chia hết cho 9
b) ab=10a+b
ba=10b+a
ab+ba=10a+a+10b+b
=11a+11b
=(a+b)11
=> ab+ba luôn chia hết cho 11
chúc bạn học tốt nha
Ta có: ab - ba = 10a + b - (10b + a) = 10a + b - 10b - a = 9a - 9b = 9 x (a - b)
Vì a > b nên a - b dương => 9 x (a - b) chia hết cho 9
ab + ba = 10a + b + 10b + a = 11a + 11b = 11 x (a + b) chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
ab + ba = 10a + b + 10b + a = (10 + 1)a + (1 + 10)b = 11a + 11b = 11(A + b)
Vậy ab + ba chia hết cho 11