Giá trị lớn nhất của: \(y=x^3+5x+7\) trên đoạn \([-5:0]\)bằng:
A. 80
B. -143
C. 5
D. 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: D.
Ta có f(x) = x 3 + 3 x 2 - 9x - 7 ⇒ f'(x) = 3 x 2 + 6x - 9 = 0
⇔
f(-4) = 13, f(-3) = 30, f(1) = -12, f(3) = 20
Vậy min f(x) = -12.
Đáp án: D.
Ta có f(x) = x 3 + 3 x 2 - 9x - 7 ⇒ f'(x) = 3 x 2 + 6x - 9 = 0
⇔
f(-4) = 13, f(-3) = 30, f(1) = -12, f(3) = 20
Vậy min f(x) = -12.
7 x 2 (x – 7) + 5x(7 – x) = 0
ó 7x.x(x – 7) – 5.x(x – 7) = 0
ó (7x.x – 5.x)(x – 7) = 0
ó x(7x – 5)(x – 7) = 0
Giá trị lớn nhất của x thỏa mãn đề bài là x = 7.
Đáp án cần chọn là: B
1,
a,
Ta có:
|x-2,1|=3/2
TH1: x-2,1=3/2
=> x=-3/5
TH2: 2,1-x=3/2
=> x=3/5
b, (x + 5) . (2x - 3) = 0
=> \(\orbr{\begin{cases}x+5=0\\2x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{3}{2}\end{cases}}\)
2,
a, A = 2 . | 2 - 5x | - 4/6
b, B = | x - 1/2 | + | y - 3/4 | - 1,5
Giải:
a,
Ta có: \(\left|\text{ 2-5x}\right|\ge0\Rightarrow2.\left|2-5x\right|\ge0\)
\(\Rightarrow2.\left|2-5x\right|-\frac{4}{6}\ge-\frac{4}{6}\)
Dấu '=' xảy ra khi 2.|2-5x|=0
=> \(x=\frac{2}{5}\)
Min A=-4/6 khi và chỉ khi x=2/5
b, B = | x - 1/2 | + | y - 3/4 | - 1,5
Tương tự Min B= -1,5 khi và chỉ khi x=... y=... tự giải
Câu 3:
a,
Ta có:
\(\frac{1}{2}.\left|5-x\right|\ge0\)
=> \(7-\frac{1}{2}\left|5-x\right|\le7\)
Dấu '=' xảy ra khi
|5-x|=0
=> x=5
câu b tương tự
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
\(y=x\left(x^2+5\right)+7\le0+7=7\text{ vì:}x^2+5>0\text{ và }x\le0\)
dấu bằng:x=0