K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Ta có:\(A=1+19^{19}+93^{199}+1993^{1994}\)

Dễ thấy:

\(19^2\equiv1\left(mod10\right)\Rightarrow19^{18}\equiv1\left(mod10\right)\Rightarrow19^{19}\equiv9\left(mod10\right)\)

\(93^4\equiv1\left(mod10\right)\Rightarrow93^{196}\equiv1\left(mod10\right)\Rightarrow93^{199}\equiv7\left(mod10\right)\)

\(1993\equiv3\left(mod10\right)\Rightarrow1993^4\equiv1\left(mod10\right)\Rightarrow1993^{1992}\equiv1\left(mod10\right)\Rightarrow1993^{1994}\equiv9\left(mod10\right)\)

\(\Rightarrow1+19^{19}+93^{199}+1993^{1994}\equiv1+9+7+9\equiv6\left(mod10\right)\)

Cho bạn 1 ý tưởng làm bài này nhưng không khả thi lắm :v

NM
14 tháng 1 2022

ta chứng minh \(A=n^2\)

thật vậy

với n=1 , thì \(A=1=1^2\) đúng

ta giả sử đẳng thức đúng tới k ,tức là : 

\(1+3+5+..+2k-1=k^2\)

Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)

vậy đẳng thức đúng với k+1

theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương

26 tháng 11 2015

3.

x={0 ;1;2 ;3 ;4 ;5 ;6 ;7........................}

ƯC(100;500) =100

suy ra x =100

BC(10;25) =50

suy ra x =50

tick nha

13 tháng 5 2023

A không phải là số chính phương nhé!

 Vì ta thấy rằng các số được cộng vào A là các số mũ của 3, bắt đầu từ 3 mũ 1 đến 3 mũ 62. Ta có thể viết lại A dưới dạng tổng sau:

A = 1 + 3 + 3 mũ 2 + ... + 3 mũ 61 + 3 mũ 62 = (3 mũ 0) + (3 mũ 1) + (3 mũ 2) + ... + (3 mũ 61) + (3 mũ 62)

Chú ý rằng đây là cấp số nhân với a_1 = 3 mũ 0 = 1 và r = 3.

Do đó, ta có thể sử dụng công thức tổng cấp số nhân để tính tổng:

A = (3 mũ 63 - 1) / (3 - 1) - 3 mũ 0 = 3 mũ 63 / 2 - 1

Giá trị của A là một số chẵn, vì 3 mũ 63 là một số lẻ nên tổng giữa số này và số âm 1 cũng là một số lẻ. Tuy nhiên, số chẵn không phải là số chính phương, vì một số chính phương luôn có dạng 4k hoặc 4k+1 với k là một số nguyên không âm.

 
13 tháng 5 2023

chi vậy trời

23 tháng 10

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 5198)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

9 tháng 7 2018

A=n^5-n+2018

=n(n^4-1)+2018

=n(n-1)(n+1)(n^2+1)+2016+2 chia 3 dư 2

=> ko

T
Tai
VIP
27 tháng 7 2023

 

 Ta có: A = 5 + 52 + 5+....+ 5100

      ⇒�=(5+52)+(53+54)+...+(599+5100)

       ⇒�=5(1+5)+53.(1+5)+...+599.(1+5)

       ⇒�=5.6+53.6+...+599.6

              �=6.(5+53+...+599) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

23 tháng 10

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

14 tháng 11 2018

Ta tính được A=\(\frac{3^{2005}-3}{2}\)=\(\frac{3\cdot\left(3^{2004}-1\right)}{2}\)

Nhận thấy A chia hết cho 3. 

Một số chính phương chia hết cho 3 phải chia hết cho 9

mà \(3^{2004}-1\)không chia hết cho 3 nên 

\(3\cdot\left(3^{2004}-1\right)\)không chia hết cho 9 hay A không chia hết cho 9

Vậy A không phải là số chính phương

Chúc bạn học tốt!

25 tháng 2 2020

Có thể làm như sau

3chia hết cho 9

3chia hết cho 9

3chia hết cho 9

...

32004 chia hết cho 9

mà 3 không chia hết cho 9

nên A = 3+ 3^2+3^3+3^4+...+3^2004 không chia hết cho 9

vậy A không là số chính phương

22 tháng 7 2015

a. Ta có: A = 5 + 52 + 5+....+ 5100

      \(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

       \(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

       \(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)

              \(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

17 tháng 12 2016

còn câu b