K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2021

Ta thấy:

A = \(\frac{20162017}{20162016}\) và     B =  \(\frac{20152016}{20152015}\)

A  =  \(\frac{20162016}{20162016}\)+  \(\frac{1}{20162016}\)  =   \(1\) +   \(\frac{1}{20162016}\)

B  =   \(\frac{20152015}{20152015}\) +   \(\frac{1}{20152015}\)=   \(1\)  +    \(\frac{1}{20152015}\)

Vì:     \(\frac{1}{20162016}\)   \(< \)       \(\frac{1}{20152015}\)

Nên:    \(A\)    \(< \)    \(B\)

~ HokT~

25 tháng 9 2021

\(A=1+2+2^2+2^3+...+2^{2021}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2022}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}=2^{2022}-1>2^{2021}-1=N\)

25 tháng 9 2021

\(a=1+2+2^2+...+2^{2021}\\ \Rightarrow2a=2+2^2+2^3+...+2^{2022}\\ \Rightarrow2a-a=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow a=2^{2022}-1>2^{2021}-1=n\)

24 tháng 4 2016

A=20162016/20162016 + 1/20162016=1 + 1/20162016

B=20152015/20152015 + 1/20152015=1+1/20152015

Mà 20162016>20152015-->1/20162016<1/20152015 và 1=1

=>A<B

2 tháng 7 2021

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

          \(\frac{1}{3^2}< \frac{1}{2.3}\)

          \(\frac{1}{4^2}< \frac{1}{3.4}\)

           ...

           \(\frac{1}{n^2}< \frac{1}{n\left(n-1\right)}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n-1\right)}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1\) (vì \(n\ge2\))

Vậy \(A< 1\).

9 tháng 3 2016

Ta có:

\(B=20152015.20152017=\left(20152016-1\right)\left(20152016+1\right)=20152016^2-1\)

Lại có,  \(A=20152016^2\)

Vậy,   \(A>B\)

1 tháng 5 2016

a/b>a+m/b+m

1 tháng 5 2016

bang nhau

24 tháng 4 2016

đề sai à