Cho tam giác ABC, về phía ngoài tam giác vẽ hình bình hành MNAB, EBCD, HCAK.
CMR: Tam giác MDK và NEH có cùng trọng tâm (ko dùng vec tơ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi G và G' lần lượt là trọng tâm tam giác BAC và A'B'C'
Trước hết ta cần biết trọng tâm của 1 ∆ABC bất kỳ có 2 tính chất sau :
G là trọng tâm ∆ABC :
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)(1)
Gọi O là điểm bất kỳ thì :
=>\(\overrightarrow{GO}+\overrightarrow{OA}+\overrightarrow{GO}+\overrightarrow{OB}+\overrightarrow{GO}+\overrightarrow{OC}=0\)
=> \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=-3\overrightarrow{GO}\)
=>\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}\)(2)
Tức là trọng tâm 1 tam giác bất kỳ luôn có t/c (1) & (2)
Nếu G là trọng tâm ∆ABC
=>\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}\)
=> \(\overrightarrow{AO}+\overrightarrow{BO}+\overrightarrow{CO}=3\overrightarrow{GO}\)
Nếu G' là trọng tâm ∆A'B'C'
=> \(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}=3\overrightarrow{OG'}\) (4)
Lấy (3) + (4) TA ĐƯỢC
=>\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=3\overrightarrow{GG'}\)
mà G trùng G' thì GG^ = 0^
=> AA'^ + BB'^ + CC'^ = 0
Akai Harumabach nhac lam @Nguyễn Việt Lâm