Cho A=3^2015-2^2015+3^2013-2^2013
Cm: A chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 2015+20152+20153+....+20152013+20152014+20152015
A= ( 2015+20152 )+ ( 20153+20154 )+..... + (20152012+20152013) + (20152014+20152015)
A= 2015. (1+2015)+ 20153 .(1+2015) +.....+ 20152012. (1+2015)+ 20152014. (1+2015)
A= 2015.2016 + 20153.2016 +......+ 20152012.2016 + 20152014.2016
A= 2016. ( 2015+ 20153 +.......+20152012 + 20152014)
=> A chia hết cho 2016
=> đpcm : điều phải chứng minh
1)\(S=3+3^3+3^5+...+3^{2013}+3^{2015}\)(có 1008 nhóm)
\(S=\left(3+3^3\right)+\left(3^5+3^7\right)+\left(3^9+3^{11}\right)+...+\left(3^{2013}+3^{2015}\right)\)(có 504 nhóm)
\(S=30+3^3\left(3^2+3^4\right)+3^7\left(3^2+3^4\right)+...+3^{2011}\left(3^2+3^4\right)\)
\(S=30+90\left(3^3+3^7+...+3^{2011}\right)⋮90\)
Ta có: 4n-5 chia hết cho 2n-1
Mà 2(2n-1) chia hết cho 2n-1
hay 4n-2 chia hết cho 2n-1
Nên 4n-5-(4n-2) chia hết cho 2n-1
hay 4n-5-4n+2 chia hết cho 2n-1
-3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(-3)={1;-1;3;-3}
Ta có bảng:
2n-1 1 -1 3 -3
n 1 0 2 -1(loại vì n thuộc N)
Vậy n ={1;0;2}
1. Đặt P là thương:
\(P=\frac{4n-5}{2n-1}\)
\(\Leftrightarrow P=\frac{4n-2-3}{2n-1}\)
\(\Leftrightarrow P=2-\frac{3}{2n-1}\)
P thuộc Z khi và chỉ khi: 2n-1 là ước của 3.
TH1: \(
2n-1=-1\)
\(\Leftrightarrow n=0\)
TH2: \(2n-1=-3
\)
\(\Rightarrow n=-1\) (Loại do n tự nhiên)
TH3: \(2n-1=1
\)
\(\Rightarrow n=1\)
TH4: \(2n-1=3\)
\(\Rightarrow n=2\)
Vậy có ba giá trị của n tự nhiên là 0; 1; 2.
Bài 3:
\(24^{54}\cdot54^{24}\cdot2^{10}\)
\(=\left(2^3\cdot3\right)^{54}\cdot\left(3^3\cdot2\right)^{24}\cdot2^{10}\)
\(=2^{108}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^{10}\)
\(=2^{142}\cdot3^{78}\)
\(72^{63}=\left(2^3\cdot3^2\right)^{63}=2^{189}\cdot3^{126}⋮2^{142}\cdot3^{78}\)(ĐPCM)
1)
4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1\(\in\)Ư(3)={-1;1;-3;3}
=>2n\(\in\){0;2;-2;4}
=>n\(\in\){0;1;-1;2}
2)S= 3^1+3^3+3^5+...+3^2013+3^2015
S=(3^1+3^3+3^5)+(3^7+3^9+3^11)+...+(3^2011+3^2013+3^2015)
S=273+3^6(3+3^3+3^5)+...+3^2010(3+3^3+3^5)
S=273+3^6.273+...+3^2010.273
S=273(1+3^6+...+3^2010)
S=7.39(1+3^6+...+3^2010)
=>S chia hết cho 7
còn k chia hết cho 9 thì mk chịu
Bổ sung cho bạn Mai Ngọc:
a) Ta có:
S=31+33+35+...+32013+32015
=3+ 32(3+33+...+32011+32013)
= 3+9(3+32+...+32011+32013)
Vì 9 chia hết cho 9 nên 9(3+33+...+32011+32013) chia hết cho 9
Mà 3 không chia hết cho 9 nên 3+9(3+32+...+32011+32013) không chia hết cho 9
Hay S không chia hết cho 9
Vậy không chia hết cho 9
Ta có A = 3^2015 - 2^2015 + 3^2013 - 2^2013
= 3^2015 + 3^2013 - ( 2^2015 + 2^2013)
= 3^2013.3^2 + 3^2013 - ( 2^2013.2^2 + 2^2013)
= 3^2013.(3^2+1) - 2^2013.(2^2+1)
= 3^2013.10 - 2^2013.5
= 3^2013.2.5 - 2^2013.5
= 5 . (3^2013.2 - 2^2013) chia hết cho 5
Vậy A chia hết cho 5