\(\sqrt{8+\sqrt{15}}\)
\(\sqrt{9-\sqrt{77}}\)
\(\sqrt{10+\sqrt{99}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)
\(\Leftrightarrow1-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)
=>n+1=3000
hay n=2999
\(\sqrt{7+\sqrt{40}}\)
\(=\sqrt{7+2\sqrt{2}.\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{5}\)
\(\)
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)
c) \(\sqrt{5+\sqrt{24}}=\sqrt{5+2\sqrt{6}}=\sqrt{3}+\sqrt{2}\)
d) \(\sqrt{12-\sqrt{140}}=\sqrt{12-2\sqrt{35}}=\sqrt{7}-\sqrt{5}\)
f) \(\sqrt{8-\sqrt{28}}=\sqrt{8-2\sqrt{7}}=\sqrt{7}-1\)
g) \(\sqrt{23-4\sqrt{15}}=\sqrt{23-2\cdot\sqrt{60}}=2\sqrt{5}-\sqrt{3}\)
h) \(\sqrt{9+4\sqrt{2}}=\sqrt{\left(2\sqrt{2}+1\right)^2}=2\sqrt{2}+1\)
\(C=\dfrac{\sqrt{10}-\sqrt{5}+2\sqrt{2}+\sqrt{5}-\sqrt{10}-1}{2\sqrt{2}+2+2\sqrt{2}-1+2\sqrt{2}+2}\)
\(=\dfrac{2\sqrt{2}-1}{6\sqrt{2}+3}=\dfrac{9-4\sqrt{2}}{21}\)
\(B=\dfrac{40}{6+2\sqrt{5}+\sqrt{4\sqrt{5}+4}}\)
\(=\dfrac{40}{\left(\sqrt{5}+1\right)^2+2\sqrt{\sqrt{5}+1}}\)
\(=\dfrac{40}{\sqrt{\sqrt{5}+1}\left(\sqrt{\sqrt{5}+1}+2\right)}\)
\(=\dfrac{40\sqrt{\sqrt{5}-1}}{2\left(\sqrt{\sqrt{5}+1}+2\right)}\)
\(=\dfrac{20\left(\sqrt{\sqrt{5}-1}\right)\left(\sqrt{\sqrt{5}+1}-2\right)}{\sqrt{5}+1-4}\)
\(=\dfrac{20\left(\sqrt{\sqrt{5}-1}\right)\left(\sqrt{\sqrt{5}+1}-2\right)}{-3+\sqrt{5}}\)
\(=-5\left(3+\sqrt{5}\right)\left(\sqrt{\sqrt{5}-1}\right)\left(\sqrt{\sqrt{5}+1}-2\right)\)
cho P = \(\frac{\sqrt{x}+2}{\sqrt{x}+1}\) , Tìm GTLN của P
\(\sqrt{8+\sqrt{15}}\)
=\(\sqrt{\frac{15}{2}+2\cdot\sqrt{\frac{15}{2}}\cdot\sqrt{\frac{1}{2}}+\frac{1}{2}}\)
=\(\sqrt{\left(\sqrt{\frac{15}{2}}+\sqrt{\frac{1}{2}}\right)^2}\)
=\(|\sqrt{\frac{15}{2}}+\sqrt{\frac{1}{2}}|\)
=\(\sqrt{\frac{15}{2}}+\sqrt{\frac{1}{2}}\)
\(\sqrt{9-\sqrt{77}}\)
=\(\sqrt{\frac{11}{2}-2\cdot\sqrt{\frac{11}{2}}\cdot\sqrt{\frac{7}{2}}+\frac{7}{2}}\)
=\(\sqrt{\left(\sqrt{\frac{11}{2}}-\sqrt{\frac{7}{2}}\right)^2}\)
=\(|\sqrt{\frac{11}{2}}-\sqrt{\frac{7}{2}}|\)
=\(\sqrt{\frac{11}{2}}-\sqrt{\frac{7}{2}}\)
\(\sqrt{10+\sqrt{99}}\)
=\(\sqrt{\frac{11}{2}+2\cdot\sqrt{\frac{11}{2}}\cdot\sqrt{\frac{9}{2}}+\frac{9}{2}}\)
=\(\sqrt{\left(\sqrt{\frac{11}{2}}+\sqrt{\frac{9}{2}}\right)^2}\)
=\(|\sqrt{\frac{11}{2}}+\sqrt{\frac{9}{2}}|\)
=\(\sqrt{\frac{11}{2}}+\sqrt{\frac{9}{2}}\)