K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}\)

\(\Rightarrow1-A-\frac{1}{50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...-\frac{1}{48}+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\frac{49}{50}-A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}\)

\(-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{50}\right)\)

\(\Rightarrow\frac{49}{50}-A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{25}\)

\(\Rightarrow\frac{49}{50}-A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

\(\Rightarrow A=\frac{49}{50}-\left(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+...+\frac{1}{50}\right)\)

Ta có :

\(\frac{1}{26}< \frac{1}{25};\frac{1}{27}< \frac{1}{25};\frac{1}{28}< \frac{1}{25};\frac{1}{29}< \frac{1}{25};\frac{1}{30}< \frac{1}{25};\)

\(\frac{1}{31}< \frac{1}{30};\frac{1}{32}< \frac{1}{30};..;\frac{1}{39}< \frac{1}{30};\frac{1}{40}< \frac{1}{30};\)

\(\frac{1}{41}< \frac{1}{40};\frac{1}{42}< \frac{1}{40};...;\frac{1}{49}< \frac{1}{40};\frac{1}{50}< \frac{1}{40}\)

\(\Rightarrow\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}< 5.\frac{1}{25}+10.\frac{1}{30}+10.\frac{1}{40}\)

\(\Rightarrow\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)

\(\Rightarrow A=\frac{49}{50}-\left(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+...+\frac{1}{50}\right)>\frac{49}{50}-\frac{4}{5}=\frac{9}{50}>\frac{10}{50}=\frac{1}{5}\)

\(\Rightarrow A>\frac{1}{5}\)( đpcm )

27 tháng 6 2021

a, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow a^2+2ab+b^2=\left(a+b\right)^2\ge4ab\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

b, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)

 

ab≤a2+b2/2

12 tháng 5 2021

Tính nhanh 5/8+5/24+5/48+......+5/9800

3 tháng 4 2024

a: ĐKXĐ: x>0; x<>9

b: \(A=\dfrac{x+3\sqrt{x}+x-3\sqrt{x}}{x-9}:\dfrac{\sqrt{x}+3-3}{\sqrt{x}+3}\)

\(=\dfrac{2x}{x-9}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

c: Để A=-1 thì 2 căn x=-căn x+3

=>x=1

tối nay mk sẽ trả lời , đợi nha, mk đi hk đã

ta có:

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\),

 \(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}...\)

\(\frac{1}{10^2}=\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)

Từ trên => A < \(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

=> \(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{9}-\frac{1}{10}\)

=> \(A< \frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)

=> \(A< \frac{2}{5}\)mà \(\frac{2}{5}< \frac{1}{2}\)

=> \(A< \frac{1}{2}\)=> \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< \frac{1}{2}\)

Chúc bn học tốt !