Giải pt
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực ra cũng EZ thôi :
\(\frac{6}{x^2-9}-1+\frac{4}{x^2-11}-1-\frac{7}{x^2-8}+1-\frac{3}{x^2-12}+1=0=>\)
\(\frac{15-x^2}{x^2-9}+\frac{15-x^2}{x^2-11}-\frac{15-x^2}{x^2-8}-\frac{15-x^2}{x^2-12}=0\)
=> \(\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}-\frac{1}{x^2-8}-\frac{1}{x^2-12}\right)=0\)
=>\(15-x^2=0=>x=\pm\sqrt{15}\)
Hình như còn nghiệm , any body help me ?
\( a)5\left( {x - 3} \right) - 4 = 2\left( {x - 1} \right) + 7\\ \Leftrightarrow 5x - 15 - 4 = 2x - 2 + 7\\ \Leftrightarrow 5x - 19 = 2x + 5\\ \Leftrightarrow 5x - 2x = 5 + 19\\ \Leftrightarrow 3x = 24\\ \Leftrightarrow x = 8\\ b)\dfrac{{8x - 3}}{4} - \dfrac{{3x - 2}}{2} = \dfrac{{2x - 1}}{2} + \dfrac{{x + 3}}{4}\\ \Leftrightarrow 8x - 3 - \left( {3x - 2} \right).2 = \left( {2x - 1} \right).2 + x + 3\\ \Leftrightarrow 8x - 3 - 6x + 4 = 4x - 2 + x + 3\\ \Leftrightarrow 2x + 1 = 5x + 1\\ \Leftrightarrow 2x - 5x = 0\\ \Leftrightarrow - 3x = 0\\ \Leftrightarrow x = 0 \)
\( c)\dfrac{{2\left( {x + 5} \right)}}{3} + \dfrac{{x + 12}}{2} - \dfrac{{5\left( {x - 2} \right)}}{6} = \dfrac{x}{3} + 11\\ \Leftrightarrow 4\left( {x + 5} \right) + 3\left( {x + 12} \right) - \left[ {5\left( {x - 2} \right)} \right] = 2x + 66\\ \Leftrightarrow 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66\\ \Leftrightarrow 2x + 66 = 2x + 66\\ \Leftrightarrow 0x = 0\left( {VSN} \right)\\ \Leftrightarrow x = 0 \)
\(d)\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\\ \Leftrightarrow \dfrac{x-10}{1994}-1+\dfrac{x-8}{1996}-1+\dfrac{x-6}{1998}-1+\dfrac{x-4}{2000}-1+\dfrac{x-2}{2002}-1=\dfrac{x-2002}{2}-1+\dfrac{x-2000}{4}-1+\dfrac{x-1998}{6}-1+\dfrac{x-1996}{8}-1+\dfrac{x-1994}{10}-1\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}+\dfrac{x-2004}{8}+\dfrac{x-2004}{10}\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}-\dfrac{x-2004}{8}-\dfrac{x-2004}{10}=0\\ \Leftrightarrow \left(x-2004\right)\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}+\dfrac{1}{2000}+\dfrac{1}{2002}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}=0\right)\\ \Leftrightarrow x-2004=0\\ \Leftrightarrow x=2004\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
Cái này bạn đặt x+3/x-2 = a
x-3/x+2 = b
=> x^2-9/x^2-4 = ab
Ta có : a^2 - 7ab + 6b^2 = 0
<=> a^2 - 6ab - ab + 6b^2 = 0
PT đa thức thành nhân tử là xong :D
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
a) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> (x+1).4 = (x - 2) . 3
=> 4x + 4 = 3x - 6
=> 4x - 3x = - 6 - 4
=> x = - 10
b) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
\(\Rightarrow\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}=\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}\)
\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}-\frac{x+1}{12}\) = 0
\(\Rightarrow\left(x+1\right).\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)\)
Vì \(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\ne0\) nên x + 1 =0
=> x = -1
c) Xem lại đề
\(\frac{-5}{9}x+1=\frac{2}{3}x-10\)
\(\frac{-5}{9}x+\frac{9}{9}=\frac{6}{9}x-\frac{90}{9}\)
\(-5x+9=6x-90\)
\(-5x-6x=-90-9\)
\(-11x=-99\)
\(x=\frac{-99}{-11}=9\)
b. \(\frac{x-22}{8}+\frac{x-21}{9}+\frac{x-20}{10}+\frac{x-19}{11}=4\)
\(\frac{x-22}{8}-1+\frac{x-21}{9}-1+\frac{x-20}{10}-1+\frac{x-19}{11}-1=0\)
\(\frac{x-30}{8}+\frac{x-30}{9}+\frac{x-30}{10}+\frac{x-30}{11}=0\)
\(\left(x-30\right)\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)=0\)
x=30
Chúc bạn học tốt!!
ĐKXĐ: \(\left\{{}\begin{matrix}x^2\ne9\\x^2\ne11\\x^2\ne8\\x^2\ne12\end{matrix}\right.\Leftrightarrow x\notin\left\{3;-3;\sqrt{11};-\sqrt{11};2\sqrt{2};-2\sqrt{2};2\sqrt{3};-2\sqrt{3}\right\}\)
Đặt \(x^2-11=a\)(Điều kiện: \(a\notin\left\{-2;0;-3;1\right\}\))
PT\(\Leftrightarrow\frac{6}{a+2}+\frac{4}{a}-\frac{7}{a+3}-\frac{3}{a-1}=0\)
\(\Leftrightarrow\frac{6}{a+2}-1+\frac{4}{a}-1+\frac{-7}{a+3}+1+\frac{-3}{a-1}+1=0\)
\(\Leftrightarrow\frac{6-a-2}{a+2}+\frac{4-a}{a}+\frac{-7+a+3}{a+3}+\frac{-3+a-1}{a-1}=0\)
\(\Leftrightarrow-\frac{a-4}{a+2}-\frac{a-4}{a}+\frac{a-4}{a+3}+\frac{a-4}{a-1}=0\)
\(\Leftrightarrow\left(a-4\right)\left(-\frac{1}{a+2}-\frac{1}{a}+\frac{1}{a+3}+\frac{1}{a-1}\right)=0\)
\(\Leftrightarrow a-4=0\)
hay a=4
\(\Leftrightarrow x^2-11=4\)
\(\Leftrightarrow x^2=15\)
hay \(x=\pm\sqrt{15}\)