Tìm GTLN
B = -x² + 2xy - 4y² + 2x + 10y + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 -2xy + 2y2+ 2x - 10y -5
= x2 - 2xy + y2 + y2 + 2x - 2y - 8y -5
= [(x2 - 2xy + y2) + 2 ( x - y) + 1]2 + (y2 - 8y + 16) - 22
= [ (x - y)2 + 2(x - y) + 1]2 + (y - 4)2 - 22
= (x - y + 1)2 + ( y - 4)2 - 22 ≥ -22
=> Min của A = -22 khi {y−4=0x−y+1=0{y−4=0x−y+1=0 => {y=4x−3=0{y=4x−3=0 => {y=4x=3{y=4x=3
Vậy Min của A = 2016 khi x = 3 và y = 4.
Ta có \(A=-x^2+2xy-4y^2+2x+10y-3\)
\(A=-x^2+2\left(y+1\right)x-4y^2+10y-3\)
\(A=-x^2+2\left(y+1\right)x-\left(y+1\right)^2-3y^2+12y-2\)
\(A=-\left[x-\left(y+1\right)\right]^2-3\left(y^2-4y+4\right)+10\)
\(A=-\left(x-\left(y+1\right)\right)^2-3\left(y-2\right)^2+10\) \(\le10\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y+1\\y-2=0\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(3,2\right)\)
Vậy \(max_A=10\)
\(A=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy+4y^2-2x-10y+8\right)\)
\(=-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2-5\right]\)
\(=5-\left(x-y-1\right)^2-3\left(y-2\right)^2\le5\)
Dấu"=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy MAX \(A=5\)khi \(x=3;\)\(y=2\)
\(C=-x^2+2xy-4y^2+2x+10y-3\)
\(=-\left(x^2+2xy-y^2\right)+2x-2y-1-3y^2+12y-12+10\)
\(=-\left(x-y\right)^2+2\left(x-y\right)-1-3\left(y^2-4y+4\right)+10\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10\le10\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy \(C_{max}=10\) tại x = 3; y = 2
Mọi người ơi mk đang cần gấp giúp mk với ạ
\(-B=x^2-2xy+4y^2-2x-10y-5\)
=> \(-B=\left(x-y-1\right)^2+3y^2-12y+12-18\)
=> \(-B=\left(x-y-1\right)^2+3\left(y-2\right)^2-18\)
CÓ: \(\left(x-y-1\right)^2;3\left(y-2\right)^2\ge0\forall x;y\)
=> \(B\ge-18\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)