Cho \(\Delta\)ABC, có \(\widehat{B}\)> 90 độ, AB = \(\frac{1}{2}\)AC. Chứng minh rằng:
a, BC < AB
b, \(\widehat{A}< 2\widehat{B}\)
Các bạn giải giúp mình với, cảm ơn nhiều <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ phân giác BD, ta có: \(\frac{DA}{DC}=\frac{BA}{BC}\)
\(\Rightarrow\frac{DA}{AB}=\frac{DC}{BC}=\frac{DA+DC}{AB+BC}=\frac{AC}{AB+BC}\left(1\right)\)
Mặt khác \(\Delta ABD\)vuông tại A, ta có:
\(\tan\widehat{ABD}=\tan\frac{\widehat{ABC}}{2}=\frac{DA}{AB}\left(2\right)\)
Từ (1) và (2) =>đpcm
a)
ta có D là giao điểm của cung tròn tâm B với cung tròn tâm C=>BD là bán kính của cung tròn tâm B và CD là bán kính của cung tròn tâm C
ta có: DB là bán kính của cung tròn tâm B mà AC cũng là bán kính của cung tròn tâm B=> AC=BD
CM tương tự ta có: CD=AB
xét \(\Delta ABC\) và \(\Delta DCB\) có:
BD=AC(cmt)
AB=DC(cmt)
BC(chung)
\(\Rightarrow\Delta ABC=\Delta DCB\left(c.c.c\right)\)
=>\(\widehat{BAC}=\widehat{BDC}=80^o\)
b)
theo câu a, ta có:
\(\Delta ABC=\Delta DCB\Rightarrow\widehat{ABC}=\widehat{BCD}\)
=>CD//AB(2 góc slt)
Nếu bạn xem ko đc hình thì xem hình này cũng được, khi nãy mk vẽ quên căn
ở câu a, mk ko quen cách diễn đạt lớp 9 cho lắm nên thông cảm nhé
c, Do \(\Delta ADE=\Delta DBF\) ( câu b )
\(\Rightarrow\widehat{AED}=\widehat{DFB}\)
Mà 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow DF//AE\)
Hay \(DF//AC\)
*Sửa đề 1 : a) CM Tam giác ADC = Tam giác ADB
a) Xét tam giác ADC và tam giác ADB có :
AC = AB ( gt )
^CAD = ^BAD ( AD là phân giác của ^A )
AD chung
=> Tam giác ADC = tam giác ADB ( c.g.c )
b) Tam giác ADC = tam giác ADB
=> ^ABD = ^ACD ( hai góc tương ứng )
* Hoặc : Tam giác ABC có AB = AC
=> Tam giác ABC cân tại A
=> ^ABD = ^ACD ( hai góc ở đáy )
2. Tam giác ABC có ^A = 900
=> Tam giác ABC vuông tại A
Áp dụng định lí Pytago cho tam giác vuông ABC ta có :
BC2 = AC2 + AB2
=> \(AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-12^2}=5cm\)
Mình nghĩ nên sửa đề lại 1 chút :
D là 1 điểm trên AC sao cho\(\widehat{ABD}=\frac{1}{3}\widehat{ABC}\).E là 1 điểm trên AB sao cho\(\widehat{ACE}=\frac{1}{3}\widehat{ACB}\)
Sau đây là hình vẽ :
B nha cái này mình tự tính nên cũng ko biết đúng ko
https://youtu.be/Plu8_rCyaG4