Cho 2 số A(n) và B(n) như sau:
A = 22n + 1 + 2n+1 + 1
B = 22n + 1 – 2n + 1 + 1
Chứng minh rằng với mọi số tự nhiên n, tồn tại một và duy nhất một trong hai số A(n) hoặc B(n) chia hết cho 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Giả sử cả A và B đều chia hết cho 5
=> a - b chia hết cho 5
=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5
=> 22n + 1 chia hết cho 5
Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra
=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5
=> đpcm
-Ta có: \(2^{4n}=16^n=\overline{...6}\)
\(\Rightarrow2^{4n}.4=\overline{...6}.4\)
\(\Rightarrow2^{4n+2}=\overline{...4}\)
\(A.B=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\left[\left(2^{2n+1}+1\right)-2^{n-1}\right]\)
\(=\left(2^{2n+1}+1\right)^2-2^{2.\left(n+1\right)}\)
\(=2^{4n+2}+2^{2n+1}.2+1-2^{2n+2}\)
\(=2^{4n+2}+1=\overline{...4}+1=\overline{...5}⋮5\)
-Như vậy, thì \(A⋮5\) hay \(B⋮5\).
-Còn về hai số đó có thể cùng chia hết cho 5 không thì mình chưa làm được.
-Chứng minh hai số đó không thể cùng chia hết cho 5:
-Vì \(\left(A.B\right)⋮5\) nên sẽ có 1 trong hai số chia hết cho 5. Vì A,B có vai trò giống nhau nên giả sử số đó là A.
-Ta chứng minh \(\left(A+B\right)\) không chia hết cho 5 thì \(B\) cũng không chia hết cho 5.
\(A+B=\left(2^{2n+1}+2^{n+1}+1\right)+\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=2.2^{2n+1}+2=2\left(2^{2n+1}+1\right)\)
-Ta có: \(2^{2n}=4^n\).
+Nếu \(n=2k\) thì \(4^n=4^{2k}=16^k=\overline{...6}\Rightarrow4^n.2+1=\overline{...2}+1=\overline{...3}\) không chia hết cho 5.
+Nếu \(n=2k+1\) thì \(4^n=4^{2k+1}=16^k.4=\overline{...6}.4=\overline{...4}\)
\(\Rightarrow4^n.2+1=\overline{...8}+1=\overline{...9}\).
\(\Rightarrow\) Với mọi giá trị của n thì \(4^n.2+1=2^{2n+1}+1\) không chia hết cho 5.
\(\Rightarrow2\left(2^{2n+1}+1\right)\) không chia hết cho 5 hay \(A+B\) không chia hết cho 5.
\(\Rightarrow B\) không chia hết cho 5.
-Vậy.................
Ta có :
\(A_{\left(n\right)}.B_{\left(n\right)}=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=\left[\left(2^{2n+1}+1\right)-2^{n+1}\right]\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\)
\(=\left(2^{2n+1}+1\right)^2-\left(2^{n+1}\right)^2\)
\(=\left(2^{2n+1}\right)^2+2.2^{2n+1}+1-\left(2^{n+1}\right)^2\)
\(=2^{4n+2}+2^{2n+2}+1-2^{2n+2}\)
\(=4^{2n+1}+1\) luôn chia hết cho 5\(\forall n\in N\)
Do đó \(A_{\left(n\right)}.B_{\left(n\right)}\) chia hết cho 5 hay tồn tại 1 và duy nhất \(A_{\left(n\right)}\) hoặc \(B_{\left(n\right)}\) chia hết cho 5
#)Giải :
Giả sử cả A và B đều chia hết cho 5
=> a - b chia hết cho 5
=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5
=> 22n + 1 chia hết cho 5
Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra
=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5
=> đpcm
Đây là theo cách giải của mik nha:
lấy A.B = 2^(4n+2)+1 = 4.16^n+1
Mà 16^n luôn có đuôi bằng 6 hoặc 1 (khi n=0) với mọi n
=> 4.16^n luôn có đuôi bằng 4
=> A.B luôn có đuôi bằng 5
=> ĐPCM
Ta có:
A.B=2^(4n+2) + 1=2^(4n).2^(2) + 1=16^(n).4 + 1. Dễ dàng nhận thấy 16^n luôn có tận cùng bằng 6 => 16^(n).4 có tận cùng bằng 4=> 16^(n).4 + 1 có tận cùng bằng 5, chia hết cho 5 => Ít nhất có 1 số A hoặc B chia hết cho 5. Mặt khác A - B= 2.2^(n+1) = 2^(2n+1), ko chia hết cho 5 với mọi n => A và B ko thể đồng thời chia hết cho 5. Kết hợp => Đpcm.